29제 (해설)
 수학 영역(A 형)

안녕하세요?
$\mathrm{J} \& \mathrm{~S}$ 모의고사 저자 JH 입니다. 추석 동안 혹은 그 이후 파이널 교재로 제작하려고 했었던 문제들을 만드는 중에 시기를

놓쳐 검토를 마친 문제들만 무료배포로 편집해 제공합니다.
(J\&S모의고사 공동저자인 SI코딩노예 님도 제작에 일부 참여해 주셨습니다)

맞은 답이라도 꼭 해설 읽어주세요. 의도와 맞는 풀이인지 보기 위함입니다. 정성들여 자세히 적었습니다.

1. 우선, $A+B=E$ 에서 식의 앞에 행렬 A 를 곱하면 $A^{2}+A B=A$ 따라서 $A^{2}=A-A B$ 이다.

두 번째 식 $A^{2}-3 E=X$ 의 A^{2} 대신
$A-A B$ 를 넣으면 $A-A B-3 E=X$ 따라서 X 의 모든 성분의 합은
$3+1-6=-2$ 이다. ($:$ 행렬 $3 E$ 의 모든 성분의 합은 -6 이다.)
2. $A^{3}-E=O(A-E)\left(A^{2}+A+E\right)=O$

행렬 $A-E$ 의 역행렬이 존재하므로
$(A-E)\left(A^{2}+A+E\right)=O$ 의 양 변에 $(A-E)^{-1}$ 을 곱하면 $A^{2}+A+E=O$ 따라서 $A^{2}=-A-E$ 행렬 A 의 모든 성분의 합은 -1 , 행렬 E 의 모든 성분의 합은 2

따라서 행렬 A^{2} 의 모든 성분의 합 -1
3. $A-2 B=2 E$ 이므로 $A B=B A$ 이다.
(식의 왼쪽에 A 를 곱하면
$A^{2}-2 B A=2 A$, 식의 오른쪽에 A 를 곱하면 $A^{2}-2 A B=2 A$)
!!!!
외워두면 좋다. B 가 A 관한 1 차식이면 즉, $B=m A+n E$ 의 꼴이면 (m, n 은 상수) $A B=B A$ 이다.
!!!!
식 $A B^{2}+B=B A$ 을 $A B^{2}+B=A B$ 로
고칠 수 있다. $(A B=B A$ 이기 때문)
B 의 역행렬이 존재하므로 $A B+E=A$ 따라서 $A-A B=E, A(E-B)=E$
A 의 역행렬이 존재한다.
$A=(E-B)^{-1}$
$A-2 B=2 E$ 에서 A 대신 $(E-B)^{-1}$ 를
넣고 양 변에 $E-B$ 를 곱하면 $2 B^{2}=E$ 따라서 ㄷㄷㅗ 맞다.
4. $B^{2} A+B=E$ 에서
$B(B A+E)=E$ 이므로 $\quad(B A+E) B=E$
따라서 $B B A=B A B$
두 번째 식 $B(A B-B A)=3 E-A$ 의
좌변이 $B A B-B B A$ 이므로 O 이다. (O 는 영행렬)
따라서 $A=3 E$
첫 번째 식 $B^{2} A+B=E$ 의 A 대신 $3 E$ 를 대입하자. $3 B^{2}+B=E$
ㄷㅇㅢ $B^{-1}=3 B+E$ 이 맞다.
5. $n=1,2,3$ 일 때는 지수함수
$y=\left(\frac{6}{2 n-1}\right)^{x}$ 가 증가함수이므로
$x=0$ 일 때, 최댓값 1 을 갓는다.
$n=4,5,6, \cdots, 14,15$ 일 때는
$y=\left(\frac{6}{2 n-1}\right)^{x}$ 가 감소함수이므로
$x=-1$ 일 때, 최댓값 $\frac{2 n-1}{6}$ 을 갖는다.
$(n=4,5,6, \cdots, 14,15)$
따라서 $1+1+1+\sum_{n=4}^{15} \frac{2 n-1}{6}=39$
6. (가)에서 함수 $\frac{f(x)}{g(x)}=b \times a^{-x}$ 의

최댓값은 $x=-1$ 일 때, $a b=3$ 이다.
(나)에서 $f(x), g(x)$ 모두 증가함수이므로 함수 $f(x)+g(x)$ 의 최댓값은 $x=1$ 일 때, $a b+a^{2}=19$ 따라서 $a^{2}=16, a=4$ 이다.

따라서 $b=\frac{3}{4}$
7. 우선 대략적인 개형을 파악하기 위해 $y=3 \times\left(\frac{n}{n+20}\right)^{x}$ 의 특징을 파악해 보면 항상 점 $(0,3)$ 을 지나고 감소함수라는 점을 알 수 있다.

$$
\xrightarrow{y=3 \times\left(\frac{n}{n+20}\right)^{x}}
$$

위 그래프는 대략적인 개형이다.

이제 기울기가 1 인 직선이 오직 하나가 되도록 n 의 값을 찾아보자.

만약 위의 지수함수처럼 $x=1$ 에서 2 와 3 사이의 값을 가진다면 최소 점 $(0,0)$ 과 점 $(1,1)$ 을 잇는 직선과 점 $(0,1)$ 과 점 $(1,2)$ 를 잇는 직선 2 개 생기게 된다.

반대로 위 그림처럼 $x=1$ 에서 0 과
1 사이의 값을 가진다면 기울기가 1 인 직선이 존재하지 않게 된다.
따라서 반드시 $x=1$ 에서 1 이상 2 미만의 값을 가져야 한다.
그러나 아래 그림처럼 $x=2$ 에서 곡선이 1 보다 큰 값을 갖게 된다면 기울기가 1 인 직선이 2 개 존재하게 된다.

따라서 위 그림처럼 $x=2$ 에서 곡선은 0 과 1 사이의 값을 가져야 한다.
$1 \leq 3 \times\left(\frac{n}{n+20}\right)^{1}<2$ 의 부등식을 풀면 $10 \leq n<40$
$0 \leq 3 \times\left(\frac{n}{n+20}\right)^{2}<1$ 의 부등식을 풀면
$n^{2}-20 n-200<0$
$\Leftrightarrow-10+10 \sqrt{3}<n<10+10 \sqrt{3}$
$1.7<\sqrt{3}<1.8$ 이므로 둘을 동시에 만족하는 n 의 값은
$n=10,11,12,13, \cdots, 27$
8. 우선 주어진 로그함수와 직선은 $x=5$ 에서 만난다. 따라서 교점은 $(5,3)$ 이다. 그림을 그려보면.
$n=1,2,3,4,5$ 일 때는 $\overline{\mathrm{A}_{n} \mathrm{~B}_{n}} \times \overline{\mathrm{B}_{n} \mathrm{H}_{n}}$ 의 값이 n 이 증가할수록 감소한다.
$9<\overline{\mathrm{A}_{n} \mathrm{~B}_{n}} \times \overline{\mathrm{B}_{n} \mathrm{H}_{n}}<40$ 을 만족하는 n 의
값은 $n=1,2,3$ 이다.
(아래 그림 참고)

$n=6,7,8$ 일 때는 $\overline{\mathrm{A}_{n} \mathrm{~B}_{n}}$ 의 길이는 증가하지만 $\overline{\mathrm{B}_{n} \mathrm{H}_{n}}$ 의 길이는 감소한다. 그러나 $n=6,7,8$ 일 때는
$9<\overline{\mathrm{A}_{n} \mathrm{~B}_{n}} \times \overline{\mathrm{B}_{n} \mathrm{H}_{n}}<40$ 을 만족하는 n 의
값이 없다. (모두 9보다 작다.)
$n>8$ 일 때는 $\overline{\mathrm{A}_{n} \mathrm{~B}_{n}} \times \overline{\mathrm{B}_{n} \mathrm{H}_{n}}$ 의 값이 n 이
증가할수록 증가한다. $\overline{\mathrm{A}_{n} \mathrm{~B}_{n}} \times \overline{\mathrm{B}_{n} \mathrm{H}_{n}}$ 의
값을 n 에 대하여 일반화하면
$\overline{\mathrm{A}_{n} \mathrm{~B}_{n}}=\log _{2}(n+3)+n-8$ 이고,
$\overline{\mathrm{B}_{n} \mathrm{H}_{n}}=n-8$ 이다. 이제 $n>8$ 의 범위에서
$9<\overline{\mathrm{A}_{n} \mathrm{~B}_{n}} \times \overline{\mathrm{B}_{n} \mathrm{H}_{n}}<40$ 를 만족하는 n 을
찾아보면 $n=10$ 부터 $\overline{\mathrm{A}_{n} \mathrm{~B}_{n}} \times \overline{\mathrm{B}_{n} \mathrm{H}_{n}}$ 의
값이 $\left(\log _{2} 13+2\right) \times 2$ 로 9 보다 크다.
(아래 그림 참고)

부등호의 양 변이 정수이므로,
$\overline{\mathrm{A}_{n} \mathrm{~B}_{n}} \times \overline{\mathrm{B}_{n} \mathrm{H}_{n}}$ 가 정수가 되는 n 을
찾아보면(정수가 큰 힌트이다) $n=13$ 일
때, 정수임을 알 수 있고, $n=13$ 을
넣어보면 $(4+5) \times 5$ 로 40 보다 크다.
그렇다면 $n=12$ 를 넣어서 40 보다
작은지 크기를 비교해보면
$\left(\log _{2} 15+4\right) \times 4<40$
$\left(\log _{2} 15+4\right)<10$ 이므로 부등식을
만족한다.
따라서 $n=10,11,12$
모든 자연수 n 의 값은
$n=1,2,3,10,11,12$
따라서 39
9. $\sum_{n=1}^{8}(-1)^{n} a_{n}=12$

이 식을 풀어 쓰면
$\left(-a_{1}+a_{2}\right)+\left(-a_{3}+a_{4}\right)+\ldots$ 이므로
$d+d+\ldots$ 로 나타낼 수 있고, 따라서
$4 d=12$ 에서 $d=3$ 이다.
$a_{5}=a_{1}+4 d$ 에서 $a_{5}=10+12=22$
10. 조건 (나)에서 $\left\{\frac{a_{n}}{b_{n}}\right\}$ 이 공비가 3 인

등비수열이고, 수열 $\left\{a_{n}\right\}$ 은 공비가 2 인
등비수열이므로 수열 $\left\{b_{n}\right\}$ 도
등비수열이다. 수열 $\left\{b_{n}\right\}$ 의 공비는
$\frac{3}{2}$ 이다. 따라서 $b_{n}=9 \times\left(\frac{2}{3}\right)^{n-1}$
$b_{3}=4$
11. $S_{2 n}=\sum_{k=1}^{n} a_{2 k}+3 n^{2}+n$ 에서
$S_{2 n}-\sum_{k=1}^{n} a_{2 k}=a_{1}+a_{3}+a_{5}+a_{7}+\ldots+a_{2 n-1}$
이다.
(학생들을 가르치다 보면 $S_{2 n}$ 과 $\sum_{k=1}^{n} a_{2 k}$ 을 많이 헷갈려 한다.)
$a_{1}+a_{3}+a_{5}+a_{7}+\cdots+a_{2 n-1}=3 n^{2}+n$
이므로 $a_{2 n-1}=6 n-2$ 이다. $a_{2 n-1}$ 의 공차가 6 이므로 a_{n} 의 공차는 3 이다.
따라서 $a_{n}=3 n+1$
12. $\sum_{n=1}^{5} a_{2 n-1}=30$ 에서
$a_{1}+a_{3}+a_{5}+a_{7}+a_{9}=30$, 그런데
$a_{n+1}=a_{n}+2 n$ 이므로
$a_{2}=a_{1}+2, a_{4}=a_{3}+6, a_{6}=a_{5}+10$
$a_{8}=a_{7}+14, a_{10}=a_{9}+18$ 이므로
$\sum_{n=1}^{5} a_{2 n}=\sum_{n=1}^{5} a_{2 n-1}+2+6+10+14+18$
$=30+50=80$
13. 규칙에 따라 점 P_{n} 을 나타내 보면 홀수 번 째의 점에서 x 좌표가 항상 1 임을 알 수 있고, y 좌표는 $\mathrm{P}_{2 \mathrm{k}+1}$ 일 때 $1+\frac{1}{2}+\frac{1}{4}+\cdots+\left(\frac{1}{2}\right)^{k-1}$ 이다.

따라서 P_{11} 의 좌표는
$\left(1,1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)$ 이다.
$a=1, b=\frac{31}{16}$
14. $\lim _{n \rightarrow \infty} \frac{4 S_{n}-3 n^{2}}{\left(a_{n}\right)^{2}}=\frac{1}{3}$ 에서 최고차항의 계수만 본다. 따라서 $\frac{4 \times \frac{d}{2}-3}{d^{2}}=\frac{1}{3}$ 이어야 한다. $d=3 \quad a_{n}=3 n-2 \quad a_{5}=13$ (왜 S_{n} 을 $\frac{d}{2}$ 로 두었는지 모르겠으면 필자의 등차수열의 합에 관하여.. 라는 칼럼을 찾아보길 바란다.)
15. $\lim _{n \rightarrow \infty} \frac{S_{n}-3^{n}}{S_{n}}=\frac{1}{3}$ 이 식을 자세히

살펴보자. 공비가 3 보다 크다면
극한값이 1 이 될 것이고 공비가 3 보다
작다면 극한값이 존재하지 않을
것이다. (초항이 a, 공비가 r 인
등비수열의 합 S_{n} 은 $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$ 이기
때문이다.)
따라서 공비가 3 이다.
$\frac{\frac{a}{2}-1}{\frac{a}{2}}=\frac{1}{3}, a=3$
16. 그림과 같이 P_{n} 의 좌표는 $(n, 0)$ 이다.

삼각형 $\mathrm{OP}_{n} \mathrm{Q}_{n}$ 의 넓이를 구하기 위해 원점에서 직선에 수선의 발을 내린다. 그 점을 H_{n} 이라 하자. 또 아래 그림과 같이 선분 $\mathrm{P}_{n} \mathrm{H}_{n}$ 의 길이를 a 라 두면 선분 OH_{n} 의 길이는 $2 a$ 로 둘 수 있다. (점 O 와 점 H_{n} 을 지나는 직선의 기울기는 $\frac{1}{2}$ 이기 때문이다. 이를 설명한 그림이 아래와 같다.

이제 a 를 n 에 관해 나타내보면 삼각형 $\mathrm{OH}_{n} \mathrm{Q}_{n}$ 에서 피타고라스의 정리를 이용한다.

$n^{2}=a^{2}+(2 a)^{2}$ 따라서 $n^{2}=5 a^{2}$
구하려는 삼각형 $\mathrm{OP}_{n} \mathrm{Q}_{n}$ 의 넓이는
밑변이 $2 a$ 이고 높이가 $2 a$ 이므로
$S_{n}=\frac{1}{2} \times 2 a \times 2 a=2 a^{2}=\frac{2}{5} n^{2}$
구하려는 값은 $\lim _{n \rightarrow \infty} \frac{100 S_{n}}{n^{2}}=40$
17. $g(x)=f(x)+|f(x)|$ 의 그래프는 $f(x)>0$ 일 때는
$g(x)=f(x)+f(x)=2 f(x)$ 이고
$f(x)<0$ 일 때는
$g(x)=f(x)-f(x)=0$ 이다.
$(f(x)=0$ 일 때는 $g(x)=0$ 이다.)
따라서 $g(x)$ 의 불연속점은
$x=-2,1$ 일 때이다.
이차함수 $h(x)$ 를 $h(x)=(x+2)(x-1)$ 로 둘 수 있고, $h(3)=5 \times 2=10$ 이다.
18. $\lim _{x \rightarrow 3} \frac{f(x)}{f(x-3)}=2$ 의 값을
$\frac{f(3)}{f(0)}=2$ 으로 바꿔도 좋다 $(f(x)$ 는 $x=1$ 에서만 불연속이기 때문이다.)

따라서 $\frac{-9+3 a-3}{3}=2 \quad a=6$
19. (나)에서 $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=2$ 이 $\frac{0}{0}$ 의

꼴이므로 $g(a)=0$ 이다. 또, 사차함수
$f(x)$ 는 $(x-a)$ 를 인수로 갖는다. 여기서 $g(x)$ 가 $(x-a)$ 만 인수로 가진다면 $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ 의 값이 0 이 될 것이다.
$f(x)$ 가 $(x-a)^{2}$ 을 인수로 갖기
때문이다. $g(x)$ 가 $(x-a)$ 만 인수로
가진다면 분자에 $(x-a)$ 인수가 하나 더 남아 있으므로 우변이 0 이다.
따라서 $g(x)$ 는 $(x-a)^{2}$ 를 인수로
갖는다. $g(x)$ 의 최고차항의 계수를 k 라 하자.
$\lim _{x \rightarrow a} \frac{(x-a)^{2}(x-a-2)^{2}}{k(x-a)^{2}}=2$ 에서
$k=2$ 이다. 따라서 $g(x)=2(x-a)^{2}$
$g(3)=18$ 이므로 $a=6$

수학 영역(A형)

20. $f(x)=x^{3}+a x^{2}+2 f^{\prime}(1) x$ 의 양변을 미분하자. $\left(f^{\prime}(0)=0\right.$ 이라는 정보가 주어졌기 때문이다.)
$f^{\prime}(x)=3 x^{2}+2 a x+2 f^{\prime}(1)$
$f^{\prime}(0)=f^{\prime}(1)=0$
따라서
$f^{\prime}(1)=3+2 a+2 f^{\prime}(1)$
$a=-\frac{3}{2}$
$f(4)=40$
21. 삼차함수 $f(x)=a x^{3}+b x^{2}+c x+5$ 가
$\lim _{x \rightarrow 1} \frac{f(x)-5}{x-1}=4$ 에서 $f(1)=5$ 이고,
$f(2)=f(3)=5$ 에서
$f(x)=a(x-1)(x-2)(x-3)+5$ 임을 알
수 있다. $(f(1)=f(2)=f(3)=5$ 이기
때문이다.)
또 $\lim _{x \rightarrow 1} \frac{f(x)-5}{x-1}=4$ 에서 $f^{\prime}(1)=4$ 이므로
(사실 $\lim _{x \rightarrow 1} \frac{a(x-1)(x-2)(x-3)}{x-1}=4$ 라고
하는 편이 더 빠르다.)
a 의 값을 2 로 구할 수 있고 구하려는
$f(-1)$ 의 값은 -43 이다.
22. 우선 (나) 조건부터 살펴보자. 함수 $f(x)$ 와 함수 $|f(x)|$ 의 그래프를 겹쳐서 나타내면 다음과 같다.

이 때, 옅게 색칠된 부분 $(|f(x)|$ 의 값들)과 진하게 색칠된 부분 $(f(x)$ 의 값들)을 서로 더해서 다시 그래프로 나타내면 다음과 같으며, 이 그래프가 $|f(x)|+f(x)$ 의 그래프이다.

이 때, 오직 구간 $(2,4)$ 에서만 증가하기 위해서는 왼쪽에서 꺾여 올라가는
지점이 $x=2$, 극댓값을 갖는 x 좌표가
$x=4$ 여야 한다.
$\rightarrow f(2)=0, f^{\prime}(4)=0$
$f(x)=a x^{2}+b x+c$ 라 할 때, (가) 조건과
(ㄱ)에 의하여
$a=-1, b=8, c=-12$
$\rightarrow f(x)=-x^{2}+8 x-12 \rightarrow f(5)=3$
!!!!
대칭성을 이용하여 $f(x)$ 가
$x=4$ 대칭임을 이용,
$f(x)=a(x-2)(x-6)$ 로 두어도 좋다.
!!!!
23. $f^{\prime}(x)=3 x^{2}+6 x-9$ 이고
$f^{\prime}(1)=0$ 이므로 점 P 에서의 접선은
$y=n^{2}-5$ (x 축과 평행한 직선)이다.
따라서 이 직선이 함수 $g(x)$ 와 만나지 않으려면, 함수 $g(x)$ 의 꼭짓점이 이 직선보다 위에 있어야 한다.
$g(x)=(x-3)^{2}+6 n-10$ 이므로
$6 n-10>n^{2}-5 \rightarrow n^{2}-6 n+5<0$
$\rightarrow(n-1)(n-5)<0 \rightarrow 1<n<5$
$n=2,3,4 \quad 2+3+4=9$
24. 우선 $f(x)=a x(x-1)(x-b)$ 에서 $b<0$ 일 때, $0<b<1$ 일 때, $b>1$ 일 때로 나눈다. $b=0,1$ 일 때는 특수한 상황이여서 (나)조건에 의해 아니란걸 알 수 있다.
또, $b<0$ 일 때와 $0<b<1$ 일 때,
(나)의 $\int_{t}^{t+2} g(x) d x=0$ 을 만족하는 t 의 최솟값의 4 이다.를 만족하지 않는다. 따라서 $b>1$ 일 때의 개형이 그려져야 하고, t 의 최솟값이 4 이므로 $b=4$ 가 되어야 한다.
$f(x)=a x(x-1)(x-4) f(5)=5$ 이므로
$a=\frac{1}{4} \quad 20(a+b)=85$
25. 1) $0 \leq x<2$ 일 때
$\rightarrow-x+2+y+z+w=6$
$\rightarrow-x+y+z+w=4$
$\left\{\begin{array}{lll}x=0 & \rightarrow & y+z+w=4 \\ x=1 & \rightarrow & y+z+w=5\end{array}\right.$
$\rightarrow{ }_{3+4-1} C_{4}+{ }_{3+5-1} C_{5}=36$
2) $2 \leq x \leq 4$ 일 때
$\rightarrow x-2+y+z+w=6$
$\rightarrow x+y+z+w=8$
$\left\{\begin{array}{lll}x=2 & \rightarrow & y+z+w=6 \\ x=3 \rightarrow & y+z+w=5 \\ x=4 \rightarrow & y+z+w=4\end{array}\right.$
$\rightarrow{ }_{3+6-1} C_{6}+{ }_{3+5-1} C_{5}+{ }_{3+4-1} C_{4}$
$=64$
26. $f(x)$ 가 우함수이므로 $x f(x)$ 는 기함수이다. 따라서 $\int_{-1}^{1} x f(x) d x=0$
$\rightarrow \int_{-1}^{1}(x+2) f(x) d x=\int_{-1}^{1} 2 f(x) d x=\frac{4}{3}$
$\rightarrow \int_{0}^{1} f(x) d x=\frac{1}{3}$
이 때, $f(x)$ 가 우함수이므로
$\int_{0}^{2} f(x) d x=\frac{1}{2} \rightarrow \int_{1}^{2} f(x) d x=\frac{1}{6}$
$\therefore 30 \times \frac{1}{6}=5$
27. $G(t)=\mathrm{P}(t \leq X \leq t+6)$
$=\mathrm{P}\left(\frac{t-m}{2} \leq \frac{X-m}{2} \leq \frac{t+6-m}{2}\right)$
$=\mathrm{P}\left(\frac{t-m}{2} \leq Z \leq \frac{t+6-m}{2}\right)$
이 때, $\frac{t+6-m}{2}-\frac{t-m}{2}=\frac{6}{2}=3$ 이다.
따라서 $G(1)$ 가 최댓값을 가지는 경우는
$\mathrm{P}(-1.5 \leq Z \leq 1.5)$ 일 때이다.
$\rightarrow m=4 \rightarrow G(t)=\mathrm{P}\left(\frac{t-4}{2} \leq Z \leq \frac{t+2}{2}\right)$
$\rightarrow G(0)=\mathrm{P}(-2 \leq Z \leq 1)=0.8185$
28. A 부품의 무게에 대한 확률변수를 X, B 부품의 무게에 대한 확률변수를 Y 라고 할 때,
$\mathrm{P}(X \geq k)+\mathrm{P}\left(Y \leq k^{2}\right)=1$
$\rightarrow \mathrm{P}(Z \geq k-10)+\mathrm{P}\left(Z \leq \frac{k^{2}-70}{3}\right)=1$
$\rightarrow k-10=\frac{k^{2}-70}{3} \rightarrow k=8$
29. (가) 조건과 (나) 조건에 의하여
$\sigma=2, m=14$
$\rightarrow \mathrm{P}(12 \leq X \leq 15)$
$=\mathrm{P}\left(\frac{12-14}{2} \leq \frac{X-14}{2} \leq \frac{15-14}{2}\right)$
$=\mathrm{P}(-1 \leq Z \leq 0.5)=0.5328$

