가장 실전에 맞는 모의고사
이제헌 지음
1. 2009 개정 교육 과정을 분석한 결과물
교육 과정이 바뀌면서 수학영역 가형은 미적분2, 확률과 통계, 기하와 벡터 이 3권의 책의 내용이 직접 출제 범위입니다. 문항 수는 각 과목 당 10문제씩 출제 되는 것이 원칙이나 과목별 내용과 수준에 따라 20% 내에서 조정 가능하다는 것을 반영하였습니다.
단원 명이 그대로 라고 해서 내용이 그대로인 것은 아닙니다.
문과의 경우
π/2, π/6등 호도법(미적분 2 과정) 표기 삭제,
이중근호 삭제
무한등비수열, 무한급수 등 용어 삭제
확률밀도함수의 넓이를 정적분을 이용하여 구하는 것 삭제
주기 표현 삭제(주기 라는 개념을 미적분 2 과정에서 배웁니다.)
통계적 추정 단원에서 구간의 기호( (a, b), [a, b] ) 표기 삭제 등
이과의 경우
지수, 로그방정식/부등식, 삼각방정식 용어 삭제,
삼각함수를 활용한 방정식은 간단한 것만 다룸
탄젠트 함수(y=tanx)의 미분은 삼각함수 단원이 아닌 몫의 미분법 단원에서 다룸
(이전 과정에서는 y=sinx, y=cosx의 미분과 함께 묶어서 배웠습니다.)
이차곡선과 직선의 위치 관계 삭제,
회전체의 부피 삭제,
확률밀도함수의 넓이를 정적분을 이용하여 구하는 것 삭제
통계적 추정 단원에서 구간의 기호( (a, b), [a, b] ) 표기 삭제 등
이 있습니다.
이처럼 일반적으로 널리 알려진 것(사인, 코사인 법칙 삭제, 분할 추가, 행렬, 점화식, 지표, 가수 용어 삭제 등) 말고도 정말 많습니다.
2. 평가원에서 출제하는 표현 100% 구현
기출 문제들을 분석하여 어떤 표현을 사용하였나, 더 쉽고 명료한 표현은 없는가에 대해 여러 번 고민하여 수학적 표현이 오해의 소지 없이 명확한 표현이 되도록 제작하였고, 평가원과 동일한 방법으로 글꼴, 크기를 지정, 수식의 로만체/이탤릭체의 구분, 그리고 그림과 그래프 제작을 일러스트레이터를 사용함으로써 실제 시험지와 같은 느낌을 받도록 하였습니다.
(평가원 시험지 pdf파일의 그림과 그래프에 들어가 있는 글씨와 수식으로 입력된 글씨의 크기가 서로 다른 방식으로 만들어졌음에도 동일합니다. 이 모의고사도 그만큼 정교하게 작업되었습니다.)
3. 최근 경향 적극 반영
2016 수능 19, 20, 27, 28번을 보면 왜 4점으로 배치되었는지 의아해할 정도로 3점 정답률과 비슷합니다. 이러한 정답률 분포는 어려운 문제(21, 29, 30)를 제외하고, 결과적으로 4점의 문제 배치는 난이도와 큰 상관관계가 없었습니다. 그럼에도, 4점을 4점으로 배치하는 데에는 이유가 있으며, 그 이유가 분명한 모의고사입니다. 난이도, 문항 배치에 대한 코멘트를 해설지에 실었습니다.
-자문위원-
김정문
고려대학교 수학교육과
現 TIM 수학학원
現 고려대 수학 문제연구 KUME 모의고사 출제위원
現 D&T 수학연구소 컨텐츠 개발팀
조기강
부산대학교 수학과
現 메가스터디 출제 및 검토위원
現 D&T 수학학원 원장
現 D&T 수학연구소 컨텐츠 개발팀
-가형 검토위원-
김규식(마약 N제 검토)
김진욱(고려대학교)
김희천(서울대학교 통계학과, D&T Core N제 기하와 벡터 검토, 마약 N제 검토)
도윤엽(경희대학교 한의예과)
박민석(강원대학교 수의예과, 마약 N제 검토)
박성현(서울대학교 물리교육과, 오르비 교대점 멘토)
안준형(우석대학교 한의예과)
용홍주(서울대학교 기계학공공학부, D&T Core N제 미적분2 검토)
유진무(서울대학교 통계학과)
이원엽(단국대학교 치의예과, 리듬농구 모의평가, The Tactics 모의고사, 마약 N제 검토)
이태호(경희대학교 한의예과)
이희성(서울대학교 조선해양공학과, D&T Core N제 기하와 벡터 검토, 마약 N제 검토)
전우진(경희대학교 한의예과)
차규민(한양대학교, T.O.P 모의고사, 리듬농구 모의평가 검토)
허민영(연세대학교 물리학과)
-나형 검토위원-
노동환 (고려대학교 수학교육과, 히든카이스 모의고사, T.O.P 모의고사, 정현경 모의고사, Bin 모의고사 검토)
성재호 (경인교육대학교 초등교육과, 리듬농구 모의평가, 이해원 FINAL 모의고사 검토)
이재명 (한양대학교 공과대학)
임석주 (연세대학교 전기전자공학부, 리듬농구 수학의 명작 미적분1 검토)
신영일 (고려대학교 경제학과)
이원엽 (단국대학교 치의예과, 리듬농구 모의평가, The Tactics 모의고사, 마약 N제 검토)
허재연 (연세대학교 경영학과)
하태원
이지앙
수학영역 가형 4회분 + 해설
수학영역 나형 4회분 + 해설
박주혁t (오르비 클래스)
“이름을 걸었다”
모의고사 제작자들을 다른 사람들 보다는 많이 겪었다고 생각합니다. (오르비에 오래 있다보니...) 몇 년만에 급성장하는 분들도 있고, 정체기(?) 인 분들도 있고, 오히려 퇴보하는 분들도 있습니다. 항상 그러하지만, 성장하는 분들의 모의고사를 검토하고 풀이하고, 학생들과 함께 하나씩 해결해 가면서 느끼는 감정은 꽤 특별합니다. 올해도 그러한 경험을 하고 있죠.
올해는 수학영역이 개정과정으로 바뀐 후의 첫해입니다. 모의고사 제작이 3년차에 접어든 ‘이제헌’ 님이, 드디어 자신의 이름을 건 모의고사를 출간합니다. 그동안 많은 문항의 출제 경험과, 평가원 코드에 대한 이해가 잘 녹아들어간 문항들이 가득합니다. 물론, 매년 업그레이드 되는 출제실력은 말할 것도 없고요.
제가 항상 이야기하는 좋은 모의고사의 요건이 있습니다. 어렵기만 한 모의고사가 좋은 것은 아닙니다. 또한 발상만 떠올리면 쉽게 풀리는 - "좋아보이는" 문제가 많은 - 모의고사도 결코 수험생들에게 최적인 모의고사는 아닙니다.
01. 수능 경향을 얼마나 잘 반영하였는가.
02. 평가원이 그러하듯, 문제를 해결하면서 다충적인 사고전재가 가능한가.
03. 발상뿐만 아니라, 연산량이 어느 정도 훈련이 되는가.
04. 문제 자체의 퀄리티가 좋은가.
‘제헌이 모의고사’는 위에 열거한 "좋은 모의고사" 에 매우 근접한 모의고사 입니다. 개정과정 수학영역, 이 혼란한 바다에서 분명히 좋은 조언자가 되어줄 것을 확신합니다.
이희성(서울대학교 조선해양공학과, D&T Core N제 기하와 벡터 검토, 마약 N제 검토)
본 모의고사를 풀면서 난이도 배치가 정말로 잘 되어있다는 느낌을 꾸준히 받았습니다. 최근 수능의 트렌드는 무조건 어렵고 발상적인 문제로 변별하는 스타일이 아니고, 적절한 논리적 사고와 실수로 인해서 변별하는 스타일입니다. 그러한 스타일을 대비하기에 매우 적절한 모의고사라고 생각합니다. 본 모의고사의 저자는 작년 스카이에듀의 차영진 선생님의 파이널 교재 저자였으며, 개인적으로는 차영진 선생님의 파이널 모의고사에 매우 만족스러웠습니다. 두 모의고사의 공통점이라면 난이도 배치가 적절하게 되어있어 실전 대비 모의고사로써의 가치가 높다는 것입니다. 그러나 이번 모의고사는 작년의 차영진T 모의고사와 비교했을 때, 킬러 문항의 퀄리티가 좋아진 것을 느꼈으며, 특히 미적분 파트의 문항들은 풀어보면 매우 좋을 것 같은 소재의 문제들이 상당히 많았습니다.
최근 쏟아져 나오는 여러 수학 실전모의고사들 중에서 실전대비가 가능한 모의고사는 생각보다 많이 없습니다. 너무 쓸데없이 어렵게만 제작된 모의고사도 있고, 너무나 쉽게 제작되어서 실전 대비의 목적이 없는 수준의 모의고사도 있으며, 너무 문제가 발상적이어서 수능이랑 트렌드가 아예 맞지 않는 모의고사도 있습니다. 본 모의고사는 그러한 평가 기준에서 가장 무난하고 균형 있게 제작된 모의고사로 실전 대비용으로는 최적의 모의고사가 될 수 있지 않을까 싶습니다.
유진무(서울대학교 통계학과)
저자가 출제하는 모의고사를 2년 째 검토하고 있습니다. 작년과 올해의 가장 큰 차이점은, 그 모의고사의 이름입니다. 올해 저자는 작년과 달리, 자신의 이름을 내걸고 모의고사를 출판합니다. 모의고사 출제자로 이미 3년 동안 명성을 쌓아온 그의 이름을 크게 걸어놓을 수 있을 만큼 올해의 문제들은 작년보다도 훨씬 발전했습니다. 명예를 걸고 출제하는 저자의 엄청난 역량을 감상할 수 있었습니다. 저자는 결코 험악한 계산이나 현란한 스킬로 문제를 포장하지 않습니다. 그렇다고 기출을 답습하기는 커녕 교과개념만으로 꾸려낸 참신한 문제들이 곳곳에서 복병마냥 기다리고 있습니다. 개념을 정확하게 알고 있다면 이 모의고사를 한 편의 새로운 기출처럼 느끼면서 완벽하게 풀어낼 수 있을 것입니다. 막히는 문제가 있다면, 그 문제에 해당하는 어떤 개념이 부족한 것인지 스스로 파악할 수 있을 것입니다.
작년, 재작년에도 엄청난 호평을 받았던 저자의 문제들보다도 더 완벽한 아름다운 문제들이 수험생 여러분들을 기다리고 있습니다!
김희천(서울대학교 통계학과, D&T Core N제 기하와 벡터 검토, 마약 N제 검토)
수능 수학을 대비하는 데 있어서 가장 중요한 것은 개념을 명확하게 한 후 기출문제를 체화시키는 것입니다. 하지만, 새로운 문제를 맞닥뜨리게 될 수능에서 기출문제 체화 이외의 공부도 필요합니다. 이 모의고사는 그 동안 체화시킨 개념과 기출 문제들을 문제 속에서 확인해보고, 새로운 문제를 만났을 때 어떻게 대처해야 할 지를 연습하기에 적합한 문제집이라 생각됩니다. 특히, 킬러 문항들은 참신하면서도 너무 복잡하지는 않기 때문에 이를 푸는 것은 실력 향상을 위한 좋은 경험이 될 것입니다. 많은 수험생분들이 이 모의고사를 푸시고 실력 향상을 이루어 내셔서 원하는 목표를 이루시길 바랍니다.
허민영(연세대학교 물리학과)
수많은 모의고사를 보고 검토해봤지만, 그중에서도 이렇게 많은 고민이 들어가 있는 경우를 본 적이 드물었습니다. 단순히 수학 실력을 확인하는 것이라기보다 실제로 출제될만한 개념과 관련하여 출제된 것이니만큼 푸는 분들에게 좋은 경험이 될 것이라 생각합니다. 한 문제 한 문제 속에 담긴 의미에 치중하여 풀어보시면 더 큰 도움이 될 것 같습니다.
박민석(강원대학교 수의예과, 마약 N제 검토)
이 모의고사의 가장 큰 장점은 조잡한 문제가 없다는 것입니다. 흔히 꼬아놓아서 어려운 문제들이 많은 모의고사가 있기 마련인데, 이 모의고사에서는 그런 문제들을 찾기 힘드실 것입니다. 때문에 학습한 문제풀이의 도구를 연습하기에 효율이 좋습니다. 또한 난이도가 최근의 모의고사, 수능과 비슷하기 때문에 실전 연습에도 큰 도움이 될 것입니다.
이원엽(단국대학교 치의예과, 리듬농구 모의평가, The Tactics 모의고사, 마약 N제 검토)
제헌이 모의고사의 문제들을 보고 매우 생소한 느낌이 들었습니다. 문제의 표현이나, 문제의 조건들이 기존에 보지 못한 것이었습니다. 그러나 그런 생소한 문제도 결국 교과과정에서 반드시 알아야할 개념으로 생각하면 쉽게 풀리는 문제들이었습니다.
수능 수학을 잘 보기 위해서 개념은 필수조건입니다. 그 이상으로 필요한 것은 그 개념을 문제에 적절하게 활용할 줄 아는 것입니다.
기본적인 개념을 알고 활용하며, 잘못 쓰고 있는 부분이 있다면 다시 기본으로 돌아가서 공부하는것, 그리고 이것을 반복하는 것이 수학을 공부하는 올바른 방법이라 생각합니다.
이 모의고사는 잘못쓰고 있거나 모르고 지나쳐버린 개념에 대한 생각을 유도하는 문제들이 많이 수록되어 있습니다.
틀린 문제나 어려운 문제를 가볍게 넘기지 마시고 저자가 강조한 개념들을 다시 찾아보시면서 그 활용을 고민해보시면 충분한 성과가 있으리라 생각합니다.
박성현(서울대학교 물리교육과, 오르비 교대점 멘토)
기출문제 변형들을 느낄 수 있었으며, '평가원 기출문제들을 단순히 풀기만 한 것이 아니라 제대로 이해하고 있느냐'를 확인할 수 있는 좋은 모의고사라고 생각합니다. D&T 팀은 역시 대단합니다!
<수학의 단권화-이과편-김지석의 필기노트> p.32의 이차함수와 이차방정식의 관계 부분에서
2. D=0, 방정식 ax²+bx+c=0의 서로 "다른" 실근 1개라고 나와 있습니다.
잘못 된 것 같은데 수정 부탁드립니다.
<수학의 단권화-이과편-김지석의 필기노트> p.32의 이차함수와 이차방정식의 관계 부분에서
2. D=0, 방정식 ax²+bx+c=0의 서로 "다른" 실근 1개라고 나와 있습니다.
잘못 된 것 같은데 수정 부탁드립니다.
미적분 완벽한 노베이스고 수1 수2는 3등급~2등급인데
이 책을 하기전에 할만한 컨텐츠 추천해 주실수 있나요? 이번수능 안칩니다!!
수1수2는 바로 시작하셔도 될 듯하고
미적분은 한번도 하지 않았다면 ebs의 수능용 기본 개념강좌와 <수학의 단권화>를 병행하길 바라요!
추천하는 ebs 기본 개념 강좌는 아래와 같습니다.
[2025 수능개념] 남치열의 만점으로 수렴하는 미적분
https://www.ebsi.co.kr/ebs/lms/lmsx/retrieveSbjtDtl.ebs?courseId=S20230000695#intro
ebs의 개념인강을 들으면서 진도 나간 부분까지
수학의 단권화를 하면 효과만점일 거예요!
기본개념 완강후에 수학의 단권화를 하지 마시고
기본 개념 강의 한 단원 다 들으면
수학의 단권화 한 단원 듣는 식으로
기본개념 1단원 → 단권화 1단원
→ 기본개념 2단원 → 단권화 2단원
→ 기본개념 3단원 → 단권화 3단원
이렇게 공부하는 게 더 효과적입니다^^
미적분 완벽한 노베이스고 수1 수2는 3등급~2등급인데
이 책을 하기전에 할만한 컨텐츠 추천해 주실수 있나요? 이번수능 안칩니다!!
수1수2는 바로 시작하셔도 될 듯하고
미적분은 한번도 하지 않았다면 ebs의 수능용 기본 개념강좌와 <수학의 단권화>를 병행하길 바라요!
추천하는 ebs 기본 개념 강좌는 아래와 같습니다.
[2025 수능개념] 남치열의 만점으로 수렴하는 미적분
https://www.ebsi.co.kr/ebs/lms/lmsx/retrieveSbjtDtl.ebs?courseId=S20230000695#intro
ebs의 개념인강을 들으면서 진도 나간 부분까지
수학의 단권화를 하면 효과만점일 거예요!
기본개념 완강후에 수학의 단권화를 하지 마시고
기본 개념 강의 한 단원 다 들으면
수학의 단권화 한 단원 듣는 식으로
기본개념 1단원 → 단권화 1단원
→ 기본개념 2단원 → 단권화 2단원
→ 기본개념 3단원 → 단권화 3단원
이렇게 공부하는 게 더 효과적입니다^^
<수학의 단권화-이과편-김지석의 필기노트> p.32의 이차함수와 이차방정식의 관계 부분에서
2. D=0, 방정식 ax²+bx+c=0의 서로 "다른" 실근 1개라고 나와 있습니다.
잘못 된 것 같은데 수정 부탁드립니다.
잘못된 것이 아닙니다.
수학에서의 언어 사용은 일상 언어 사용과 다른 부분이 있습니다.
판별식이 0일 때
그냥 실근의 개수는 2개고
서로 다른 실근의 개수는 1개입니다.
1개인데 '다른' 이라는 말을 쓰는게 일상 어법에서는 어색하겠지만
수학에서 '서로 다른 근의 개수'는 근의 종류의 수를 뜻하는 말입니다.
마치 영어 숙어처럼 통채로 받아드려야 한다고 생각하시면 됩니다.
댓글
*결제·다운로드 오류를 포함한 모든 문의는 로그인 후 고객센터 > 1:1 문의를 이용해 주세요.