수학의 명작 확률과 통계 (1쇄) 정오표

학습에 불편을 드려 정말 죄송합니다. 불편하신 분이 없도록 최대한 사소한 부분도 모두 정오 표에 담으려고 노력했습니다. 본문과 해설편을 분리해서 적어놓았습니다.

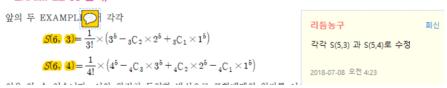
(1) 본문

p. 24 본문 각주7

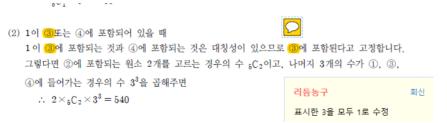
- 3) 계산의 편의상 0 ≠ 1이 되도록 "약속"을 한 것입니다.
- 7) 앞에서 0!의 값을 1로 정의하는지 의문이 들었을 텐데, 바로 나 다른 곳에서도 0≠1로 정의하면 공식을 쉽게 확장할 수 있습

p. 70 본문

p. 89 본문 EXAMPLE 33



p. 107 본문



p. 108 본문 EXAMPLE 6

* EXAMPLE 7 분석)

집합 $\{1,\ 2,\ \cdots,\ 7\}$ 의 원소가 3개인 부분집합의 개수는 총 ${}_7{\rm C}_3$ 개입니다. 그래서 21개를 전부 다 구해보려고 생각한 후에 계산 식을 써봅니다.

letra 회신 X 35로 수정

p. 231 본문 EXAMPLE 2

* EXAMPLE 2 분석)

풀이 1. 수식

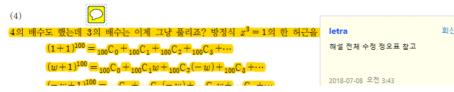
 $oldsymbol{A}$: 주머니 $oldsymbol{A}$ 에서 꺼낸 공이 흰 공일 사건 B : 주머니 B에서 꺼낸 공이 흰 곡일 사건 로

$P(A) = P(A \cap B) + P(A \cap B^{C}) = P(A)P(B|A) + P(A)P(B^{C}|A)$

입니다. $P(A) = \frac{3}{5}$, $P(A^C) = \frac{3}{5}$ 입니다. P(B|A)는 주머니 B에 흰 공 두 개를 넣고 정오표를 참고하여 수정 되므로, 흰 공

 $P(B) = P(A \cap B) + P(A^{C} \cap B) = P(A)P(B|A^{C}) + P(A^{C})P(B|A^{C})$

p. 158 본문 EXAMPLE 7 (4)



(4)

방정식 $x^3=1$ 의 두 허근은 $\frac{-1\pm\sqrt{3}i}{2}$ 입니다. 이것을 이용해 문제를 해결해봅시다.

여기서
$$w = \frac{-1 + \sqrt{3}i}{2}$$
라 하면,

$$(w+1)^{100} = {}_{100}C_0 + {}_{100}C_1w + {}_{100}C_2w^2 + \cdots$$

$$= ({}_{100}C_0 + {}_{100}C_3 + \cdots) + ({}_{100}C_1 + {}_{100}C_4 + \cdots)w + ({}_{100}C_2 + {}_{100}C_5 + \cdots)w^2$$

입니다.

$$A = {}_{100}\mathsf{C}_0 + {}_{100}\mathsf{C}_3 + \dots + {}_{100}\mathsf{C}_{99}$$

$$B = {}_{100}C_1 + {}_{100}C_4 + \cdots {}_{100}C_{100}$$

$$C = {}_{100}C_2 + {}_{100}C_5 + \cdots {}_{100}C_{98}$$

이라 하고, $w^2 = -w - 1 = \frac{-1 - \sqrt{3}i}{2}$ 이므로 $(w+1)^{100}$ 의 전개식을 실수부와 허수부로 분리하면 다음과 같습니다.

$$(w+1)^{100}\!=\!\!\left(\!A-\frac{B}{2}\!-\!\frac{C}{2}\!\right)\!\!+\!\left(B\!-C\!\right)\!\!-\!\!\frac{\sqrt{3}\,i}{2}$$

한편, $(w+1)^2 = w^2 + 2w + 1 = w$ 이므로

$$(w+1)^{100} = w^{50} = w^2 = \frac{-1 - \sqrt{3}i}{2}$$

가 됩니다. 따라서 복소수상등을 이용해주면,

$$2A - B - C = -1$$
. $B - C = -1$

임을 알 수 있고, $A+B+C=(1+1)^{100}=2^{100}$ 임도 알고 있습니다. 연립방정식을 풀어주면

$$_{100}C_0 + _{100}C_3 + \cdots + _{100}C_{99} = A = \frac{1}{3}(2^{100} - 1)$$

임을 알 수 있습니다.

(2) 해설

p. 59 VIP 28

$$\mathrm{P}\left(k\right) = {}_{100}\mathrm{C}_{\mathit{k}}\!\!\left(\frac{1}{3}\right)^{\!n}\!\!\left(\frac{2}{3}\right)^{\!100}\,^{-n}$$

이므로

$$\begin{split} \sum_{k=1}^{50} \{ \mathbf{P}(2k-1) - \mathbf{P}(2k) \} &= -\sum_{k=1}^{100} (-1)^k \mathbf{P}(k) \\ &= \sum_{k=1}^{100} \mathbf{C}_k \left(-\frac{1}{3} \right)^k \left(\frac{2}{3} \right)^{100-k} \\ &= \sum_{k=1}^{100} \mathbf{C}_k \left(-\frac{1}{3} \right)^k \left(\frac{2}{3} \right)^{100} - \left(-\frac{1}{3} + \frac{2}{3} \right)^{100-k} \\ &= -\mathbf{E} + \mathbf{F} \cdot \mathbf$$

p. 91 VIP 15

15.

한수 y=f(x)의 값은 m에서 최대이고 대칭성이 있으므로 x의 값이 m에서 떨어져 있을수록 작아집니다. 따라서 x좌 표마 비교해도 충분하니다

