더욱 철저한 검수와 빠른 피드백을 통해 완벽한 컨텐츠 제공이 될 수 있도록 약속하겠습니다.

정오 사항은 다음 페이지에 있습니다.

학습에 불편을 드려 죄송합니다.

- 제헌이 N제 집필진 -

문항 번호	수정 전	수정 후	반영일자
문제편 2번 [6번째 줄]	$a_{n+1} = f(a_n) (n \ge 2)$	$a_{n+1} = f(a_n) (n \ge 1)$	2쇄 반영 예정
문제편 9번 [5, 9번째 줄]	$[rac{5}{2}]$ 그림 R_1 에서 선분 $B_1 C_1$ 과 원 O_1 에 모두 접하는 원 \sim $[rac{9}{2}]$ 그림 R_2 에서 선분 $B_2 C_2$ 와 원 O_2 에 모두 접하는 원 \sim	[5번째 줄) 그림 R_1 에서 선분 B_1C_1 과 원 O_1 에 모두 접하고 반지름의 길이가 최대인 원을 O_2 라 하자. [9번째 줄] 그림 R_2 에서 선분 B_2C_2 와 원 O_2 에 모두 접하고 반지름의 길이가 최대인 원을 O_3 이라 하자.	2쇄 반영 예정
문제편 41번 [4번째 줄]	사각형 PAQ의 넓이를 ~	삼각형 PAQ의 넓이를 ~	2쇄 반영 예정
문제편 100번		함수 $f(x)=\int_0^x \frac{1}{\ln(\cos t+3)} dt$ 가 있다. $[< rac{2}{7}]$	2쇄 반영 예정

다음 페이지는 해설입니다. 문항에 대한 정보를 얻을 수 있으므로 문제를 다 푸시고 확인하셔도 무방합니다.

문항 번호	수정 내용	수정 후	반영일자
해설편 2번	(정답은 변함없습니다.) $[rac{ rac{ $	[9번째 줄] $k\geq 3 일 \ \text{때},$ $a_2=-\frac{1}{2}a_1+\frac{3}{2}\ ,\ a_3=-\frac{1}{3}a_2+3\ ,\ a_4=-\frac{1}{2}a_3+\frac{3}{2}\ ,\ \cdots\ 이므로$	2쇄 반영 예정
해설편 68번	(정답은 변함없습니다.) [8번째 줄] 따라서 $\frac{f(2)-f(0)}{2-0}\!>\!-2a \Leftrightarrow f(2)-f(0)>\!-4$ \sim	[8번째 줄] 따라서 $\frac{f(2)-f(0)}{2-0}>-2 \Leftrightarrow f(2)-f(0)>-4$ ~	2쇄 반영 예정
해설편 100번	(정답은 변함없습니다.) 문제편에서 $\frac{1}{\ln{(\cos{x}+2)}} \to \frac{1}{\ln{(\cos{x}+3)}}$ 으로 수정된 내용의 반영입니다.	7. $f'(x) = \frac{1}{\ln(\cos x + 3)}$ 에 x 대신 $4\pi - x$ 를 대입하면 $f'(4\pi - x) = \frac{1}{\ln(\cos(4\pi - x) + 3)} = \frac{1}{\ln(\cos x + 3)}$	2쇄 반영 예정