미적분과 통계 기본 정오표 [2014년 제1판 1쇄]

페이지	수정 전	수정 후
6쪽 그래프	$V(x) = \frac{x^2 - 3^2}{x - 3}$	V(x) $V(x)$
14쪽 Check01 (2) Sol》	(2) $\lim_{x \to 1-0} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1-0} \frac{\sqrt{x} - 1}{(\sqrt{x} - 1)(\sqrt{x} + 1)}$ $= \lim_{x \to 1-0} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$	(2) $\lim_{x \to 1-0} \frac{-(\sqrt{x}-1)}{x-1} = \lim_{x \to 1-0} \frac{-(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}$ $= \lim_{x \to 1-0} \frac{-1}{\sqrt{x}+1} = -\frac{1}{2}$
21쪽 Check05 Sol》	$\lim_{x \to 3-0} f(x) = \lim_{x \to 3-0} (x^2 - kx + 6)$ $= 9 - 3k + 6 = 12 - 3k$ $\lim_{x \to 3+0} f(x) = \lim_{x \to 3+0} (x + 3k) = 3 + 3k \text{이므로}$ $12 - 3k = 3 + 3k \therefore k = \frac{3}{2}$	$\lim_{x \to 3-0} f(x) = \lim_{x \to 3-0} (x^2 - kx + 6)$ $= 9 - 3k + 6 = 15 - 3k$ $\lim_{x \to 3+0} f(x) = \lim_{x \to 3+0} (x + 3k) = 3 + 3k $ $15 - 3k = 3 + 3k \therefore k = 2$
42쪽 Check02 Sol》		
46쪽 Check04 Sol》 ㄴ 중간	$\sim \lim_{x \to 1-0} \frac{ax}{x-1} = \frac{a}{\lim_{x \to 1-0} (x-1)}, \sim$	$\sim \lim_{x \to 1-0} \frac{a}{1-x} = \frac{a}{\lim_{x \to 1-0} (1-x)}, \sim$
59쪽 Check05 Sol》 ㄴ 마지막	~ ①의 결과는 0임을 알 수 있다. (참)	~ ①의 결과는 1임을 알 수 있다. (참)
59쪽 Check07 Sol》 ㄴ 그래프	1 < a < 2에서 $f(a) = 1$ 로 표시된 붉은색 선분	1 < a < 2에서 $f(a) = 0$ 으로 수정
64쪽 Check09 (2) Sol》첫째 줄	$y\!=\!f(x)$ $[-1,1]$ 의 그래프에서	y = f(x) $[0, 3]$ 의 그래프에서
66쪽 Check11 Sol》ㄴ 그래프	그래프 위치 수정	$a\!<\!0$ 일 때와 $a\!>\!0$ 일 때의 그래프가 서로 바뀜

페이지	수정 전	수정 후
73쪽 Check15 Sol》 다 중	중간값 정리에 의해 방정식 $f(x)=0$ 은 구간 $[2n,2n+1], [2n,2n+1]$ 에서 적어도 한 개의 실 근을 갖는다. \sim	중간값 정리에 의해 방정식 $f(x)=0$ 은 구간 $[2n,2n+1], [2n+1,2n+2]$ 에서 적어도 한 개의 실근을 갖는다. \sim
74쪽 EXERCISE 3 문제	$\lim_{x \to 2} \frac{1}{x-2} \left(\frac{1}{x+2} - \frac{1}{3} \right) $ 의 값은?	$\lim_{x \to 2} \frac{1}{x-2} \left(\frac{1}{x+1} - \frac{1}{3} \right)$ 의 값은?
76쪽 EXERCISE 7 보기 ㄴ	$\lim_{x\to 0} f(x) = 1$ 이면 $\lim_{x\to \infty} f\left(1 + \frac{1}{x}\right) = 1$ 이다.	$\lim_{x \to 1} f(x) = 1$ 이면 $\lim_{x \to \infty} f\left(1 + \frac{1}{x}\right) = 1$ 이다.
82쪽 EXERCISE 20 . 보기 ㄷ	$\Box \cdot \lim_{x \to \infty} \sum_{k=1}^{4} g\left(f\left(2k + \frac{1}{c}\right)\right) = -2$	$= \lim_{x \to \infty} \sum_{k=1}^{4} g\left(f\left(2k + \frac{1}{x}\right)\right) = -2$
85쪽 EXERCISE 27. 보기 ㄱ	$\neg . \lim_{x \to 0} \frac{f(x)}{x^3 - 1} = \frac{a}{3}$	$\neg . \lim_{x \to 1} \frac{f(x)}{x^3 - 1} = \frac{a}{3}$
97쪽 Check01 (2) Sol》	$f'(0) = \lim_{\Delta x \to 0} \frac{(0 + \Delta x)^2 - x^2}{\Delta x}$ $= \lim_{\Delta x \to 0} \frac{(\Delta x)^2}{\Delta x} = \lim_{\Delta x \to 0} \Delta x = 0$	$f'(0) = \lim_{\Delta x \to 0} \frac{(0 + \Delta x)^2 - 0^2}{\Delta x}$ $= \lim_{\Delta x \to 0} \frac{(\Delta x)^2}{\Delta x} = \lim_{\Delta x \to 0} \Delta x = 0$
109쪽 Check01 Sol》	x→2-0, x→2+0 으로 표시된 부분	$x \to 2-0 \implies x \to 2+0$ $x \to 2+0 \implies x \to 2-0$ 으로 서로 바뀌어야 함
109쪽 Check02 Sol》중간 부분	즉, $x < 1$ 일 때, $f(x) = x + b$ 이다.	즉, $x < 1$ 일 때, $f(x) = 2x + b$ 이다.
110쪽 Check03 Sol》마지막 부분	$\lim_{x \to 1-0} f(x) = \frac{3}{b} = \lim_{x \to 1+0} f(x) = a+1$	$\lim_{x \to 1+0} f(x) = \frac{3}{b} = \lim_{x \to 1-0} f(x) = a+1$
126쪽 Check05 (3) Sol》	$y' = \sim$ = $5x^4 + 2x^2 - 3$	$y' = \sim$ $= 5x^4 + 6x^2 - 3$
133쪽 Check13 Sol》 L 마지막	$\sim = \lim_{h \to 0} \frac{g(-x-h) - g(-x)}{-h}$ $= -g'(x)$	$\sim = -\lim_{h \to 0} \frac{g(-x-h) - g(-x)}{-h}$ $= -g'(-x)$
144쪽 Check09 Sol》중간부분	$5x^{4} + 2px = (x+2)\{2Q(x) + (x+2)Q'(x)\}$ $f'(2)(x-2) + f(2)$	$5x^4 + 2px = (x+2)\{2Q(x) + (x+2)Q'(x)\}$ $(f'(2)(x-2) + f(2) $
156쪽 Check09 Sol》 기	Э에서 f(0) < 0이면 $ f(0-h) > f(0) , f(0) > f(0+h) $	

페이지	수정 전	수정 후
	이것을 ③에 대입하면	이것을 ①에 대입하면
186쪽 Check07	$V(h) = (3 - \sqrt{h})^2 h$	$V(h) = (3 - \sqrt{2}h)^2 h$
Sol》마지막 부분	$V\left(\frac{\sqrt{2}}{2}\right) = \left(3 - \frac{\sqrt{2}}{2}\right)^2 \cdot \frac{\sqrt{2}}{2} = 2\sqrt{2}$	$V\left(\frac{\sqrt{2}}{2}\right) = \left(3 - \sqrt{2} \cdot \frac{\sqrt{2}}{2}\right)^2 \cdot \frac{\sqrt{2}}{2} = 2\sqrt{2}$
211쪽 아래서 셋째 줄	$s(t) = \lim_{n \to 0} \sum_{k=0}^{n-1} v(k) \cdot \Delta t_k (m)$	$s(t) = \lim_{n \to \infty} \sum_{k=0}^{n-1} v(t_k) \cdot \Delta t_k(m)$
	$\int_0^3 2x-2 dx = \sim$	$\int_0^3 2x-2 dx = \sim$
235쪽 Check02 (1) Sol》	$= -2\int_{0}^{1} (x+1)dx + 2\int_{1}^{3} (x-1)dx$	$= -2 \int_0^1 \frac{(x-1)}{0} dx + 2 \int_1^3 (x-1) dx$
	$= -2\left[\frac{1}{2}x^2 + x\right]_0^1 + 2\left[\frac{1}{2}x^2 - x\right]_1^3 = - = 1$	$= -2\left[\frac{1}{2}x^2 - x\right]_0^1 + 2\left[\frac{1}{2}x^2 - x\right]_1^3 = \sim = 5$
269쪽 Example04	(문제 조건 추가)	(단, 구간 $(1,4)$ 에서 $f(x) < x)$
270쪽 Example05 Sol》중간 부분	$= - a \int_{\alpha}^{\beta} (x-\alpha) \{(x-\alpha) + (a-\beta)\} dx$	$= - a \int_{\alpha}^{\beta} (x-\alpha) \{(x-\alpha) + (\alpha - \beta)\} dx$
	$= - a \int_{\alpha}^{\beta} \{(x-\alpha)^2 + (a-\beta)(x-\alpha)\} dx$	$= - a \int_{\alpha}^{\beta} \{(x-\alpha)^2 + (\alpha - \beta)(x-\alpha)\} dx$
288쪽 EXERCISE 4 문제	함수 $f(x) = \int_0^x (t^3 - 1)dt$ 에 대하여 \sim	함수 $F(x) = \int_0^x (t^3 - 1) dt$ 에 대하여 \sim
311쪽 Check04 문제 수정	~, 서로 다른 숫자가 적힌 카드를 뽑을 확률은?	~, 2가 적힌 카드를 하나만 뽑을 확률은?
411쪽 마지막 정리 부분	(1) 기댓값 $E(X) = \sum_{i=1}^{n} x_i = m$	(1) 기댓값 $E(X) = \sum_{i=1}^{n} x_i p_i = m$
416쪽 아래서 둘째 줄	$f(25) \times 10 = 0.28$	$f(15) \times 10 = 0.28$
447쪽 Check09 Sol》중간 부분	~ 여기서 100은 충분히 큰 시행 횟수(np=10	~ 여기서 100은 충분히 큰 시행 횟수(np=10
	$>5)$ 이므로 X 는 근사적으로 정규분포 $\mathrm{N}(100,3^2)$ 을 따른다. \sim	$>$ 5)이므로 X 는 근사적으로 정규분포 $N(10,3^2)$ 을 따른다. \sim
452쪽 Check14 Sol》 ㄴ 마지막 부분	즉, $P\left(\left \frac{X}{100} - \frac{1}{5}\right < \frac{1}{10}\right)$ 은 100 회의 시행에서 통계적 확률과 수학적 확률의 차이가 표준편차의 1.5 배 이내에 있을 확률이다.	즉, $P\left(\left \frac{Y}{225} - \frac{1}{5}\right < \frac{1}{25}\right)$ 은 225회의 시행에서 통계적 확률과 수학적 확률의 차이가 표준편차의 1.5 배이내에 있을 확률이다.
478쪽 Check07 Sol》ㄴ 중간 부분	$E(X) = 2500 \times 0.02 = 50$, $\sigma(X) = \sqrt{2500 \times 0.02 \times 0.98} = 7$	E(\underline{Y}) = 2500 × 0.02 = 50, $\sigma(\underline{Y}) = \sqrt{2500 \times 0.02 \times 0.98} = 7$

페이지	수정 전	수정 후
482쪽 Check01 Sol》넷째 줄	이때, 주어진 표본의 표본평근 \overline{X} 는 \sim	이때, 주어진 표본의 표본평 \overline{X} 는 \sim
493쪽 EXERCISE 15 보기 수정	① ¬ ② ⊏ ③ ¬, ∟ ④ ¬, ⊏ ⑤ ¬, ∟, ⊏	① 8 ② 10 ③ 12 ④ 14 ⑤ 16
496쪽 EXERCISE 20 <보기> ㄴ수정	L. ~ 20회 던질 때 앞면 이 20회 나타날 확률 은 같다.	L. ~ 20회 던질 때 앞면이 10회 나타날 확률은 같 다.
498쪽 EXERCISE 26 문제 중간 부분 추가	~ A 상자에 들어 있는 제품의 무게는 평균 16, 표준편차 6인 정규분포를 따른다고 할 때, ~	~ A 상자에 들어 있는 제품의 무게는 평균 16, 표준 편차 6인 정규분포를 따르고, B 상자에 들어 있는 제 품의 무게는 평균 10, 표준편차 6인 정규분포를 따른 다고 할 때, ~