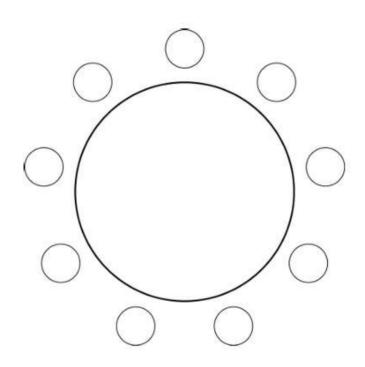
- 1. 남학생 4명, 여학생 2명이 그림과 같이 9개의 자리가 있는 원탁에 다음 두 조건에 따라 앉으려고 할 때, 앉을 수 있는 모든 경우의 수를 구하시오. (단, 회전하여 일치하는 것은 같은 것으로 본다.) [4점]
 - (가) 남학생, 여학생 모두 같은 성별끼리 2명씩 조를 만든다.
 - (나) 서로 다른 두 개의 조 사이에 반드시 한 자리를 비워둔다.

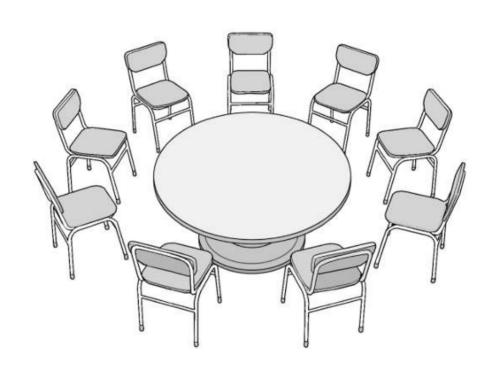


(2013년 7월 B형 27번)

- 1. [출제의도] 원순열을 이용하여 수학 외적 문제 해결하기
- (i) 남학생 4명 중 2명씩 조를 만드는 경우의 수 $_4\mathrm{C}_2 imes \frac{1}{2!}$
- (ii) 2명의 학생과 1개의 빈자리를 묶어서 생 각하면 3개의 묶음을 원형으로 배열하는 원순 열의 경우의 수 (3-1)!
- (iii) 같은 조의 학생끼리 서로 자리를 바꾸는 경우의 수 2^3
- (i), (ii), (iii)에 의하여
- $\therefore {}_{4}C_{2} \times \frac{1}{2!} \times (3-1)! \times 2^{3} = 48$

2. 여학생 3명과 남학생 6명이 원탁에 같은 간격으로 둘러앉으려고 한다. 각각의 여학생 사이에는 1명 이상의 남학생이 앉고 각각의 여학생 사이에 앉은 남학생의 수는 모두 다르다. 9명의 학생이 모두 앉는 경우의 수가 $n \times 6!$ 일 때, 자연수 n의 값은? (단, 회전하여 일치하는 것들은 같은 것으로 본다.) [4점]

① 10 ② 12 ③ 14 ④ 16 ⑤ 18



(2017년 3월 가형 15번)

[출제의도] 순열의 성질과 원순열이 활용된 실생활 문제를 해결한다.

여학생 3명이 원탁에 둘러앉는 경우의 수는 (3-1)!=2!

각 경우에 대하여 여학생과 여학생 사이 세 곳에 앉는 남학생의 수는 모두 달라야 하므로 각각 1명, 2명, 3명이고 이를 정하는 경우의 수는 3! 남학생을 일렬로 나열하는 경우의 수는 6! 그러므로 구하는 경우의 수는

 $2! \times 3! \times 6! = 12 \times 6!$

따라서 n=12

[다른 풀이]

여학생 3명이 원탁에 둘러앉는 경우의 수는 (3-1)!=2!

각 경우에 대하여 여학생과 여학생 사이 세 곳에 앉는 남학생의 수는 모두 다르므로 남학생 6명이 3명, 2명, 1명의 세 조로 나뉘어 여학생과 여학생 사이에 앉아야 한다.

이와 같이 남학생을 세 조로 나누는 경우의 수는

$$_{6}C_{3} \times_{3} C_{2} \times_{1} C_{1} = \frac{6!}{3! \, 2!}$$

각 경우에 대하여 세 조를 여학생과 여학생 사이의 세 곳에 배열하는 경우의 수는 3!

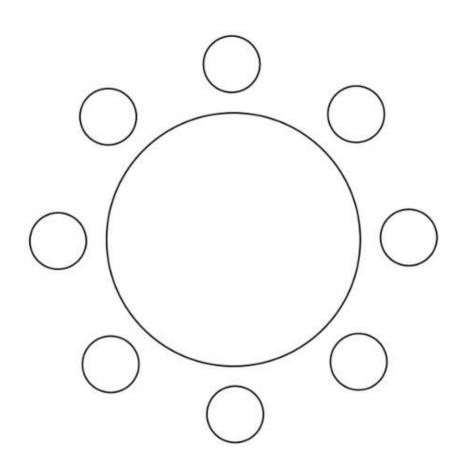
각 경우에 대하여 남학생끼리 자리를 바꾸는 경우의 수는 $3! \times 2! \times 1!$

이므로 구하는 경우의 수는

$$2! \times \frac{6!}{3!2!} \times 3! \times 3! \times 2! \times 1! = 12 \times 6!$$

따라서 n=12

- 3. 두 남학생 A, B를 포함한 4명의 남학생과 여학생 C를 포함한 4명의 여학생이 있다. 이 8명의 학생이 일정한 간격을 두고 원 모양의 탁자에 다음 조건을 만족시키도록 모두 둘러앉는 경우의 수를 구하시오. (단, 회전하여 일치하는 것은 같은 것으로 본다.) [4점]
 - (가) A와 B는 이웃한다.
 - (나) C는 여학생과 이웃하지 않는다.



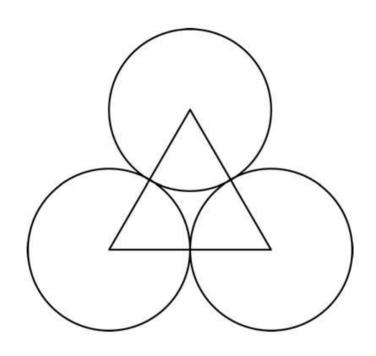
(2021년 4월 29번)

3. [출제의도] 원순열을 이용하여 추론하기

남학생 4명 중 A, B가 아닌 남학생 2명을 D, E라 하면

- (i) C가 D, E와 모두 이웃하는 경우
 A, B를 한 학생으로 생각하고,
 D, C, E를 한 학생으로 생각하여
 5명의 학생을 원형으로 배열하는 경우의 수는
 (5-1)!=4!=24
 이 각각에 대하여 A, B가 서로 자리를 바꾸는
 경우의 수는 2!, D, E가 서로 자리를 바꾸는
 경우의 수는 2!이므로 구하는 경우의 수는
 24×2!×2!=96
- (ii) C가 A 또는 B 중 한 명과 이웃하는 경우 D 또는 E 중 한 명과 C, A, B의 총 4명을 한 학생으로 생각하여 5명의 학생을 원형으로 배열하는 경우의 수는 (5-1)!=4!=24 이 각각에 대하여 D 또는 E 중 한 명을 선택하는 경우의 수는 2C₁, A, B가 서로 자리를 바꾸는 경우의 수는 2!, A, B를 한 학생으로 생각하여 C와 이웃한 두 학생이 서로 자리를 바꾸는 경우의 수는 2!이므로 구하는 경우의 수는 2!×2! = 192
- (i), (ii)에 의해 구하는 경우의 수는 96+192=288

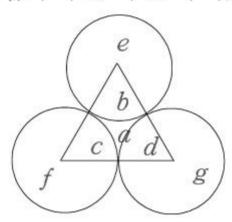
4. 그림과 같이 서로 접하고 크기가 같은 원 3개와 이 세 원의 중심을 꼭짓점으로 하는 정삼각형이 있다. 원의 내부 또는 정삼각형의 내부에 만들어지는 7개의 영역에 서로 다른 7가지 색을 모두 사용하여 칠하려고 한다. 한 영역에 한 가지 색만을 칠할 때, 색칠한 결과로 나올 수 있는 경우의 수는? (단, 회전하여 일치하는 것은 같은 것으로 본다.) [4점]



- ① 1260 ② 1680 ③ 2520 ④ 3760 ⑤ 5040

(2012학년도 6월 가형 15번)

4. 출제의도 : 원순열의 수를 이용하여 영역에 색칠하는 방법의 수를 구할 수 있는가?



그림과 같이 7개의 영역을 각각 a, b, c, d, e, f, g 라 하자.

- (i) a에 색칠하는 방법의 수는 ${}_{7}C_{1}=7$ (가지)
- (ii) b, c, d에 색칠하는 것은 회전하여 일치하는 경우가 생기므로 그 방법의 수는

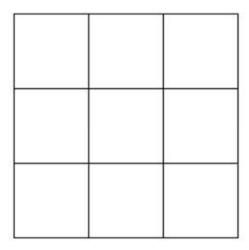
$$_{6}$$
C₃×(3-1)! =40 (가지)

(iii) a, b, c, d에 서로 다른 색이 칠해져 있으므로 e, f, g에 색칠하는 것은 회전에 의하여일치할 수 없다. 따라서, e, f, g에 색칠하는 방법의 수는

$$_{3}C_{3}\times 3! = 6$$
 (가지)

(i),(ii),(iii)에 의해 구하는 방법의 수는 $7\times40\times6=1680$ (가지)

5. 그림과 같이 합동인 9개의 정사각형으로 이루어진 색칠판이 있다.



빨간색과 파란색을 포함하여 총 9가지의 서로 다른 색으로 이 색칠판을 다음 조건을 만족시키도록 칠하려고 한다.

- (가) 주어진 9가지의 색을 모두 사용하여 칠한다.
- (나) 한 정사각형에는 한 가지 색만을 칠한다.
- (다) 빨간색과 파란색이 칠해진 두 정사각형은 꼭짓점을 공유하지 않는다.

색칠판을 칠하는 경우의 수는 $k \times 7!$ 이다. k의 값을 구하시오. (단, 회전하여 일치하는 것은 같은 것으로 본다.) [4점]

(2020년 3월 가형 27번)

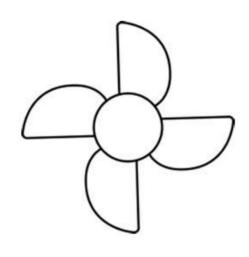
5 [출제의도] 원순열을 이용하여 문제를 해결한다.

회전하여 일치하는 것을 같은 것으로 보므로 빨간색을 칠할 정사각형은 그림과 같이 A, B, C 중에서 택할 수 있다.

A	В	
	С	

- (i) A에 빨간색을 칠하는 경우 파란색을 칠할 수 있는 경우의 수는 5이다. 나머지 7개의 정사각형에 남은 7개의 색을 칠하 는 경우의 수는 7!이다.
- (ii) B에 빨간색을 칠하는 경우 파란색을 칠할 수 있는 경우의 수는 3이다. 나머지 7개의 정사각형에 남은 7개의 색을 칠하는 경우의 수는 7!이다.
- (iii) C 에 빨간색을 칠하는 경우 파란색을 어떤 정사각형에 칠해도 빨간색이 칠해 진 정사각형과 꼭짓점을 공유하므로 조건을 만족 시킬 수 없다.
- (i), (ii), (iii)에서 구하는 경우의 수는 $(3+5)\times 7!=8\times 7!$ 따라서 k=8

6. A, B, C, D 4 가지 색의 일부 또는 전부를 사용하여 그림과 같은 프로펠러의 중앙 부분과 4 개의 날개 부분을 모두 칠하려고 한다. 인접한 중앙 부분과 날개 부분은 서로 다른 색으로 칠하 기로 할 때, 칠할 수 있는 방법의 수는? (단, 4 개의 날개는 모두 합동이고, 회전하여 같은 경우에는 한 가지 방법으로 한다.) [4점]



- ① 60 ② 72 ③ 84

- **4** 96 **5** 108

(2007년 3월 가형 15번)

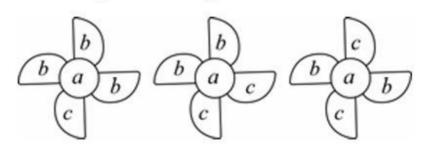
[출제의도] 순열을 이용하여 경우의 수를 구할 수 있는가를 묻는 문제이다.

주어진 프로펠러를 칠하는데 사용된 색의 수로 구분한다.

- (i) 2가지 색이 사용된 경우 a, b 에 사용될 색을 택하여 칠하는 b b 방법의 수는 ${}_{4}P_{2}=12$
- (ii) 3가지 색이 사용된 경우

 $a,\ b,\ c$ 에 사용될 색을 택하여 칠하는 방법의 수는

$$_{4}P_{3} + _{4}P_{3} \times \frac{1}{2} + _{4}P_{3} \times \frac{1}{2} = 48$$



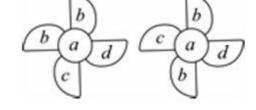
(iii) 4가지 색이 모두 사용된 경우

a, b, c, d 에 사용될 색을 택하여 칠하는 방법의

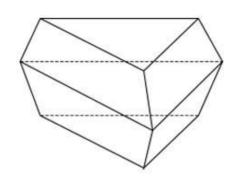
수는
$$_{4}P_{4} + _{4}P_{4} \times \frac{1}{2} = 36$$

따라서 구하는 방법의 수는

12+48+36=96 (가기)



7. 그림과 같이 합동인 정삼각형 2개와 합동인 등변사다리꼴 6 개로 이루어진 팔면체가 있다. 팔면체의 각 면에는 한 가지의 색을 칠한다고 할 때, 서로 다른 8개의 색을 모두 사용하여 팔 면체의 각 면을 칠하는 경우의 수는? (단, 팔면체를 회전시켰을 때 색의 배열이 일치하면 같은 경우로 생각한다.) [4점]



- ① 6520 ② 6620 ③ 6720 ④ 6820 ⑤ 6920

(2010년 3월 가형 15번)

7. [출제의도] 경우의 수를 구할 수 있는가를 묻는 문제이다.

정삼각형에 칠할 색을 결정하는 경우의 수는 $_8C_2=28$

나머지 6가지 색으로 등변사다리꼴을 칠하는 경우의 수는 $_6\mathrm{C}_3 \times (3-1)! \times 3! = 240$

따라서 구하는 경우의 수는 28×240=6720이다.

- 8. 서로 다른 과일 5개를 3개의 그릇 A, B, C에 남김없이 담으려고 할 때, 그릇 A에는 과일 2개만 담는 경우의 수는? (단, 과일을 하나도 담지 않은 그릇이 있을 수 있다.) [4점]

 - ① 60 ② 65 ③ 70 ④ 75 ⑤ 80

(2017학년도 9월 가형 19번)

8. 출제의도 : 조합과 중복순열을 이용하여 경우의 수를 구할 수 있는가? 정답풀이 :

서로 다른 과일 5개 중 그릇 A에 2개를 담는 경우의 수는

$$_{5}C_{2} = 10$$

이 각각에 대하여 나머지 3개의 과일을 두 개의 그릇 B, C에 담는 경우의 수는 $_2\Pi_3=2^3=8$

따라서, 구하는 경우의 수는

$$10 \times 8 = 80$$

정답 ⑤

9. 집합 $U = \{1, 2, 3, 4, 5\}$ 의 공집합이 아닌 두 부분집합 A, B에 대하여 $A \subset B$ 를 만족하는 순서쌍 (A, B)의 개수를 구하시오. [4점]

(2009년 4월 가형 14번)

9. [출제의도] 조합을 이용하여 경우의 수 구하기 [해설] n(B)=k일 때, $A\subset B$ 를 만족하는 집합 B의 개수는 ${}_5{\rm C}_k$ 이고 집합 A의 개수는 2^k-1 개이므로 순서쌍 (A,B)의 개수는 $\sum_{k=1}^5 {}_5{\rm C}_k(2^k-1)$ 이다.

$$\sum_{k=1}^{5} {}_{5}\mathbf{C}_{k}(2^{k}-1) = \sum_{k=0}^{5} {}_{5}\mathbf{C}_{k}(2^{k}-1)$$

$$= \sum_{k=0}^{5} {}_{5}\mathbf{C}_{k} 2^{k} - \sum_{k=0}^{5} {}_{5}\mathbf{C}_{k} = (2+1)^{5} - 2^{5} \ = 211$$

10. 세 명의 학생 A, B, C에게 서로 다른 종류의 사탕 5개를 다음 규칙에 따라 남김없이 나누어 주는 경우의 수는? (단, 사탕을 받지 못하는 학생이 있을 수 있다.) [4점]

- (가) 학생 A는 적어도 하나의 사탕을 받는다.
- (나) 학생 B가 받는 사탕의 개수는 2 이하이다.
- ① 167 ② 170 ③ 173 ④ 176 ⑤ 179

(2022년 3월 28번)

- [출제의도] 중복순열을 이용하여 경우의 수를 구하는 문제를 해결한다.
 - (i) 학생 B가 2개의 사탕을 받는 경우
 B가 받는 사탕을 정하는 경우의 수는 5C2=10
 남은 3개의 사탕을 두 명의 학생 A, C에게 나누어 주는 경우의 수는 서로 다른 2개에서 중복을 허락하여 3개를 선택하는 중복순열의 수와 같으므로

$$_{2}\Pi_{3}=2^{3}=8$$

이때 학생 A가 사탕을 받지 못하는 경우를 제외 해야 하므로 구하는 경우의 수는

$$10 \times (8-1) = 70$$

(ii) 학생 B가 1개의 사탕을 받는 경우
 B가 받는 사탕을 정하는 경우의 수는 ₅C₁=5
 남은 4개의 사탕을 두 명의 학생 A, C에게 나누어 주는 경우의 수는

$$_{2}\Pi_{4}=2^{4}=16$$

이때 학생 A가 사탕을 받지 못하는 경우를 제외 해야 하므로 구하는 경우의 수는

$$5 \times (16 - 1) = 75$$

(iii) 학생 B가 사탕을 받지 못하는 경우 5개의 사탕을 두 명의 학생 A, C에게 나누어 주 는 경우의 수는

$$_{2}\Pi_{5}=2^{5}=32$$

이때 학생 A가 사탕을 받지 못하는 경우를 제외 해야 하므로 구하는 경우의 수는 32-1=31

(i), (ii), (iii)에 의하여 구하는 경우의 수는 70+75+31=176

11. 숫자 0, 1, 2 중에서 중복을 허락하여 5개를 선택한 후 일렬로 나열하여 다섯 자리의 자연수를 만들려고 한다. 숫자 0과 1을 각각 1개 이상씩 선택하여 만들 수 있는 모든 자연수의 개수를 구하시오. [4점]

(2022년 4월 29번)

11 [출제의도] 중복순열을 활용하여 문제해결하기

구하는 모든 자연수의 개수는 숫자 0, 1, 2 중에서 중복을 허락하여 5개를 선택한 후 일렬로 나열하여 만든 모든 다섯 자리의 자연수의 개수에서 숫자 0 또는 숫자 1을 선택하지 않고 만든 자연수의 개수를 뺀 것과 같다.

- (i) 숫자 0, 1, 2 중에서 중복을 허락하여 5개를 선택한 후 일렬로 나열하여 다섯 자리의 자연수를 만드는 경우 만의 자리의 수가 될 수 있는 수는 1 또는 2이므로 만의 자리의 수를 정하는 경우의 수는 2 ··· ① 남은 네 자리의 수를 정하는 경우의 수는 서로 다른 3개에서 4개를 택하는 중복순열의 수와 같으므로 ₃ ∏₄ = 3⁴ = 81 ··· ①
 ①, ②에 의하여 2×81=162
- (ii) 숫자 0을 선택하지 않고 다섯 자리의 자연수를 만드는 경우
 1, 2의 2개에서 5개를 택하는 중복순열의 수와 같으므로 2∏5=2⁵=32
- (iii) 숫자 1을 선택하지 않고 다섯 자리의 자연수를 만드는 경우
 만의 자리의 수가 될 수 있는 수는 2이므로
 만의 자리의 수를 정하는 경우의 수는 1 ··· ⓒ
 남은 네 자리의 수를 정하는 경우의 수는 0, 2의
 2개에서 4개를 택하는 중복순열의 수와 같으므로
 2 Ⅲ₄ = 2⁴ = 16 ··· ⓒ
 ⓒ, ②에 의하여
 1×16=16
- (iv) 숫자 0, 1을 모두 선택하지 않고 다섯 자리의 자연수를 만드는 경우 자연수 22222의 1개다.

따라서 (i)~(iv)에 의하여 구하는 자연수의 개수는 162-(32+16-1)=115

- 12. 서로 다른 세 종류의 음료수 A, B, C가 있다. A가 3개, B가 2개, C가 1개 있을 때, 이 6개의 음료수 중에서 5명의 학생이 1개씩 마실 수 있는 경우의 수는? (단, 같은 종류의 음료수끼리는 구별하지 않는다.) [4점]
 - 1 40
 - 2 45
 - 3 50
 - **4** 55
 - **(5) 60**

(2006년 11월 가형 20번)

12. [출제의도] 순열의 뜻을 이해하고 순열의 수를 구하기 [해설] 5명의 학생이 음료수를 1개씩 마실 수 있는 경우의 수는 다음과 같다.

i) A, A, A, B, B 인 경우 :
$$\frac{5!}{3!2!}$$
 = $10(가지)$

ii) A, A, A, B, C 인 경우:
$$\frac{5!}{3!} = 20($$
가지)

iii) A, A, B, B, C 인 경우 :
$$\frac{5!}{2!2!}$$
= 30(가지)

$$10 + 20 + 30 = 60$$

13.

7개의 문자

a, a, b, b, c, d, e

를 일렬로 나열할 때, a끼리 또는 b끼리 이웃하게 되는 경우의 수를 구하시오. [4점]

(2005학년도 6월 나형 20번)

STEP♠ 이웃하는 것을 하나로 생각하고 경우의 수 구하기

- (i) a끼리 이웃하는 경우 a, a를 A로 놓고 A, b, b, c, d, e를 일렬로 나열하는 경우의 수는 $\frac{6!}{2!}$ = 360
- (ii) b끼리 이웃하는 경우 b, b를 B로 놓고 a, a, B, c, d, e를 일렬로 나열하는 경우의 수는 $\frac{6!}{2!} = 360$
- (iii) a는 a끼리, b는 b끼리 이웃하는 경우 a, a를 A로, b, b를 B로 놓고 A, B, c, d, e를 일렬로 나열하는 경우의 수는 5!=120

STEP® $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ 를 이용하여 구하기

(i)~(iii)에 의하여 구하는 모든 경우의 수는 (a끼리 이웃하는 경우의 수)+(b끼리 이웃하는 경우의 수)-(a끼리 이웃하면서 b끼리 이웃하는 경우의 수)을 이용하여 구하면 <math>360+360-120=600

14. 세 문자 a, b, c 중에서 중복을 허락하여 4개를 택해 일렬로 나열할 때, 문자 a가 두 번 이상 나오는 경우의 수를 구하시오. [4점]

(2019학년도 6월 가형 27번)

14. 출제의도 : 같은 것이 있는 순열의 수를 이용하여 조건을 만족하는 경우의 수를 구할 수 있는가?

정답풀이:

- (i) a가 네 번 나오는 경우네 개의 a를 일렬로 나열하는 경우의수는 1이다.
- (ii) a가 세 번 나오는 경우a가 3개, b가 1개이거나 a가 3개, c가1개인 경우이므로 그 경우의 수는

$$\frac{4!}{3!} + \frac{4!}{3!} = 4 + 4 = 8$$

(iii) a가 두 번 나오는 경우 먼저 a가 2개, b가 2개이거나 a가 2 개, c가 2개인 경우의 수는

$$\frac{4!}{2! \, 2!} + \frac{4!}{2! \, 2!} = 6 + 6 = 12$$

a가 2개, b가 1개, c가 1개인 경우의 수는

$$\frac{4!}{2!} = 12$$

- 이므로 이 경우의 수는 12+12=24
- (i), (ii), (iii)에서 구하는 경우의 수는 1+8+24=33

15. 세 문자 A, B, C에서 중복을 허락하여 각각 홀수 개씩 모두 7개를 선택하여 일렬로 나열하는 경우의 수를 구하시오. (단, 모든 문자는 한 개 이상씩 선택한다.) [4점]

(2018년 3월 가형 26번)

15. [출제의도] 같은 것이 있는 순열의 수를 구한다.

선택한 7개의 문자 중 A, B, C의 개수를 차례로 a, b, c라 하면 세 수 a, b, c는 모두 홀수이고 그 합이 7이어야 하므로 다음 경우가 나온다.

(i) (a, b, c)=(1, 1, 5)인 경우

7개의 문자 A, B, C, C, C, C, C를 일렬로 나열하는 경우의 수는 7개 중 같은 것이 각각 1개, 1개, 5개 있는 순열의 수와 같으므로

$$\frac{7!}{5!} = 7 \times 6 = 42$$

(a, b, c)=(1, 5, 1), (5, 1, 1)인 경우의 수도 모두 42이다.

(ii) (a, b, c)=(1, 3, 3)인 경우

7개의 문자 A, B, B, B, C, C, C를 일렬로 나열하는 경우의 수는 7개 중 같은 것이 각각 1개, 3개, 3개 있는 순열의 수와 같으므로

$$\frac{7!}{3! \times 3!} = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1) \times (3 \times 2 \times 1)}$$
$$= 140$$

(a, b, c)=(3, 1, 3), (3, 3, 1)인 경우의 수도 모두 140이다.

위의 (i), (ii)에 의하여 구하는 경우의 수는 $3\times42+3\times140=546$

16. 1개의 본사와 5개의 지사로 이루어진 어느 회사의 본사로부터 각 지사까지의 거리가 표와 같다.

지사	가	나	다	라	마
거리(km)	50	50	100	150	200

본사에서 각 지사에 A, B, C, D, E를 지사장으로 각각 발령할 때, A 보다 B가 본사로부터 거리가 먼 지사의 지사장이 되도록 5명을 발령하는 경우의 수는? [4점]

① 50 ② 52 ③ 54 ④ 56 ⑤ 58

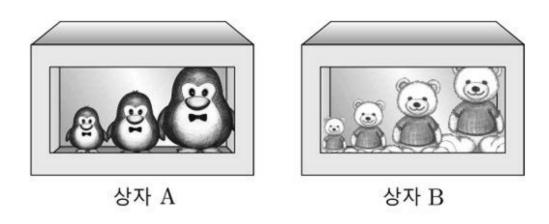
(2011학년도 6월 나형 28번)

- 16. A보다 B가 본사로부터 거리가 먼 지사에 발령이 나야하므로 다음과 같이 경우를 나누어 생각한다.
 - (i) A가 '가'지사에 발령 나는 경우
 '나' 지사에 나머지 사람을 발령하는 경우의 수는 B를 제외한 3가지이므로
 각 지사에 발령하는 경우의 수는
 3×3×2×1 = 18
 - (ii) A가 '나'지사에 발령 나는 경우
 '가' 지사에 나머지 사람을 발령하는 경우의 수는 B를 제외한 3가지이므로
 각 지사에 발령하는 경우의 수는
 3×3×2×1 = 18
 - (iii) A가 '가', '나'지사 이외의 곳에 발령 나는 경우 '가', '나'지사에 나머지 사람을 발령하는 경우의 수는 3P2 이고 나머지의 곳에

A, B를 포함하여 세 명을 발령하는 경우 의 수는 3가지뿐이므로 구하는 경우의 수 는 $_3P_2$ ×3 = 18

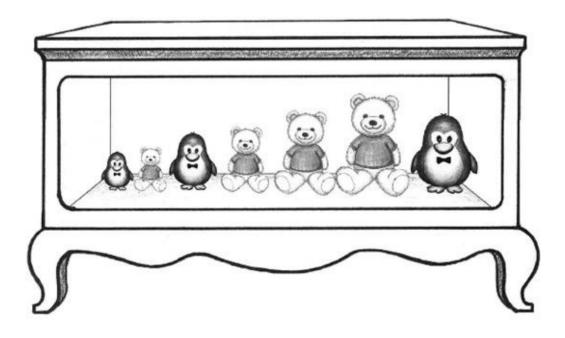
따라서 (i), (ii), (iii)에서 구하는 모든 경우의 수는 18+18+18=54 (가지)이다.

17. 그림과 같이 크기가 서로 다른 3개의 펭귄 인형과 4개의 곰 인형이 두 상자 A, B에 왼쪽부터 크기가 작은 것에서 큰 것 순으로 담겨져 있다.



다음 조건을 만족시키도록 상자 A, B의 모든 인형을 일렬로 진열하는 경우의 수를 구하시오. [4점]

- (가) 같은 상자에 담겨있는 인형은 왼쪽부터 크기가 작은 것에서 큰 것 순으로 진열한다.
- (나) 상자 A의 왼쪽에서 두 번째 펭귄 인형은 상자 B의 왼쪽에서 두 번째 곰 인형보다 왼쪽에 진열한다.



17. [출제의도] 같은 것이 있는 순열을 이용하여 수학외적 문제해결하기

펭귄 인형을 크기가 작은 것부터 a_1 , a_2 , a_3 이라하고 곰 인형을 크기가 작은 것부터 b_1 , b_2 , b_3 , b_4 라 하자.

- (i) a_3 이 b_2 보다 왼쪽에 있는 경우의 수는 $\frac{4!}{3!} = 4$
- (ii) a_3 이 b_2 보다 오른쪽에 있는 경우의 수는 $\frac{3!}{2!} \times \frac{3!}{2!} = 9$
- (i), (ii)에 의하여 구하는 경우의 수는 13

- **18.** 다음 조건을 만족시키는 네 자연수 a, b, c, d로 이루어진 모든 순서쌍 (a, b, c, d)의 개수를 구하시오. [4점]
 - (7) a+b+c+d=6
 - (나) $a \times b \times c \times d$ 는 4의 배수이다.

(2017년 3월 가형 26번)

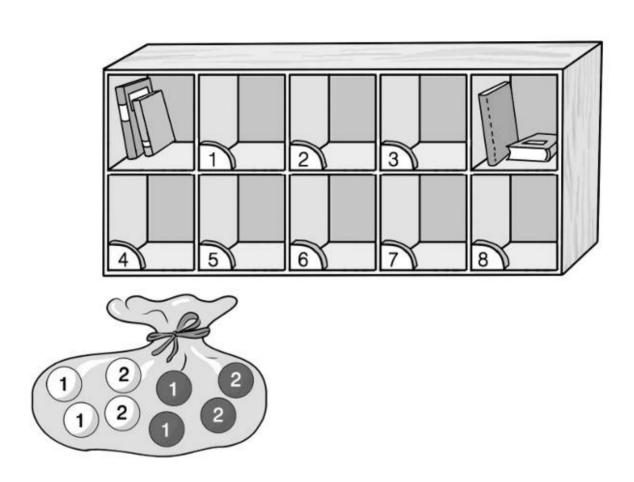
18. [출제의도] 같은 것이 있는 순열의 수를 이해하여 조건을 만족시키는 값을 구한다.

네 자연수의 합이 6인 경우는 1+1+1+3 또는 1+1+2+2의 두 가지이다.

- (i) 1+1+1+3인 경우 1×1×1×3=3이므로 곱이 4의 배수가 아니다.
- (ii) 1+1+2+2인 경우 1×1×2×2=4이므로 곱이 4의 배수이다.
- (i), (ii)에 의해서 조건을 만족시키는 네 자연수는 1, 1, 2, 2이다.

따라서 가능한 순서쌍 (a, b, c, d)의 개수는 $\frac{4!}{2!2!}$ =6

19. 그림과 같이 주머니에 숫자 1이 적힌 흰 공과 검은 공이 각각 2개, 숫자 2가 적힌 흰 공과 검은 공이 각각 2개가 들어 있고, 비어 있는 8개의 칸에 1부터 8까지의 자연수가 하나씩 적혀 있는 진열장이 있다.



숫자가 적힌 8개의 칸에 주머니 안의 공을 한 칸에 한 개씩 모두 넣을 때, 숫자 4, 5, 6이 적힌 칸에 넣는 세 개의 공이 적힌 수의합이 5이고 모두 같은 색이 되도록 하는 경우의 수를 구하시오. (단, 모든 공은 크기와 모양이 같다.) [4점]

(2017년 4월 가형 28번)

- 19. [출제의도] 같은 것이 있는 순열을 활용하여 추론 하기
 - 4, 5, 6이 적힌 칸의 세 개의 공에 적힌 수의 합이 5이고 세 개의 공이 모두 같은 색인 경우는 다음과 같다.
 - i) 4, 5, 6이 적힌 칸에 흰 공 ①, ②, ②를 넣는 경우의 수는 $\frac{3!}{2!}$

나머지 5개의 칸에 흰 공 ①, 검은 공 ①, ①, ②,

❷를 넣는 경우의 수는 <u>5!</u> 2!2!

$$\therefore \frac{3!}{2!} \times \frac{5!}{2!2!} = 90$$

- ii) 4, 5, 6이 적힌 칸에 검은 공 **1**, **2**, **2**를 넣는 경우도 마찬가지이므로 경우의 수는 90
- i), ii)에 의하여 2×90=180

- 20. 한 개의 주사위를 한 번 던져 나온 눈의 수가 3 이하이면 나온 눈의 수를 점수로 얻고, 나온 눈의 수가 4 이상이면 0점을 얻는다. 이 주사위를 네 번 던져 나온 눈의 수를 차례로 a, b, c, d라 할 때, 얻은 네 점수의 합이 4가 되는 모든 순서쌍 (a, b, c, d)의 개수는? [4점]

 - ① 187 ② 190 ③ 193 ④ 196 ⑤ 199

(20222학년도 6월 28번)

20. 출제의도 : 같은 것이 있는 순열의 수를 이용하여 조건을 만족시키는 순서 쌍의 개수를 구할 수 있는가?

정답풀이:

- 이 주사위를 네 번 던질 때 나온 눈의 수가 4 이상인 경우의 수에 따라 다음과 같이 나누어 생각할 수 있다.
- (i) 나온 눈의 수가 4 이상인 경우의 수가 0인 경우1의 눈만 네 번 나와야 하므로 이 경우의 수는

1

(ii) 나온 눈의 수가 4 이상인 경우의수가 1인 경우
 1의 눈이 두 번, 2의 눈이 한 번나와야 하므로 점수 0, 1, 1, 2를일로 나열하는 경우의 수는
 4! - 12

-이 각각에 대하여 4 이상의 눈이 한 번 나오는 경우의 수는 3이므로 이 경우의 수는 12×3=36

(iii) 나온 눈의 수가 4 이상인 경우의 수가 2인 경우

> ① 1의 눈이 한 번, 3의 눈이 한 번 나올 때, 점수 0, 0, 1, 3을 일 렬로 나열하는 경우의 수는

$$\frac{4!}{2!} = 12$$

① 2의 눈이 두 번 나올 때, 점수 0, 0, 2, 2를 일렬로 나열하는 경우 의 수는

 $\frac{4!}{2!2!} = 6$

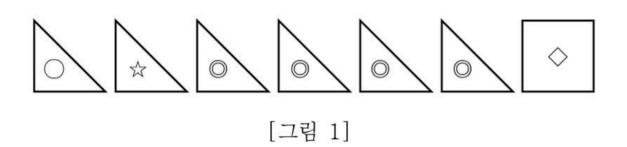
○, ○ 각각에 대하여 4이상의 눈이두 번 나오는 경우의 수는 3×3=9이므로 이 경우의 수는

 $(12+6)\times 9=162$

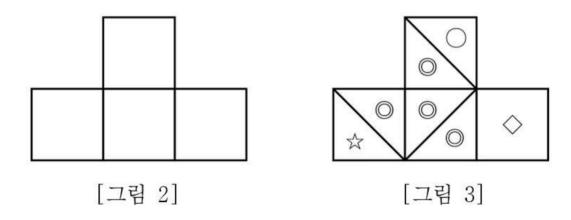
(i)~(iii)에 의하여 구하는 경우의 수는 1+36+162=199

정답 ⑤

21. [그림 1]과 같이 빗변의 길이가 √2 인 직각이등변삼각형 모양의 조각 6 개와 한 변의 길이가 1인 정사각형 모양의 조각 1개가 있다. 직각이등변삼각형 모양의 조각 중 ○, ☆, ◎가 그려진 조각은 각각 1개, 1개, 4개가 있고, 정사각형 모양의 조각에는 ◇가 그려져 있다.



[그림 1]의 조각을 모두 사용하여 [그림 2]의 한 변의 길이가 1인 정사각형 4개로 이루어진 도형을 빈틈없이 채우려고 한다. [그림 3]은 도형을 빈틈없이 채운 한 예이다.



[그림 1]의 조각을 모두 사용하여 [그림 2]의 도형을 빈틈없이 채우는 경우의 수를 구하시오. (단, ◎가 그려진 조각은 서로 구별하지 않고, 각 조각은 뒤집지 않는다.) [4점]

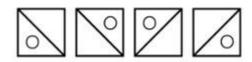
(2019년 10월 가형 28번)

21. [출제의도] 곱의 법칙을 이용하여 경우의 수에 대한 문제를 해결한다.

 \Diamond 가 그려진 조각으로 채울 정사각형을 택하는 경우 의 수는 ${}_{4}C_{1}=4$ 이고,

이 각각에 대하여 ○가 그려진 조각으로 채울 정사각 형을 택하는 경우의 수는 ₃C₁ = 3

택한 정사각형에 ○가 그려진 조각을 채우는 경우는 다음의 4가지이다.



따라서 \Diamond 가 그려진 조각과 \bigcirc 가 그려진 조각으로 정 사각형을 채우는 경우의 수는 곱의 법칙에 의하여 $4\times3\times4=48$ \bigcirc

- (i) ☆가 그려진 조각으로, ○가 그려진 조각이 채워져 있는 정사각형을 채우는 경우
 - ◎가 그려진 네 개의 조각으로 도형의 남아 있는 부분을 채우는 경우의 수는
 - 2개의 정사각형 각각에서 2개의 방법이 있으므로 $2 \times 2 = 4$
- (ii) ☆가 그려진 조각으로, ○가 그려진 조각이 채워져 있지 않은 정사각형을 채우는 경우
 ☆가 그려진 조각이 채울 정사각형을 택하는 경우의 수는 2,

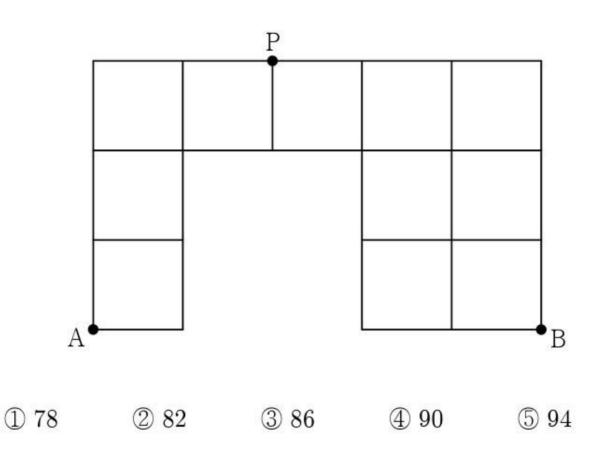
택한 정사각형에 ☆가 그려진 조각을 채우는 경우 의 수는 4,

◎가 그려진 네 개의 조각으로 도형의 남아 있는 부분을 채우는 경우의 수는 2이므로

 $2\times4\times2=16$

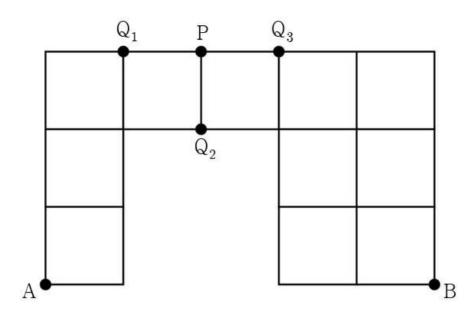
따라서 ☆가 그려진 조각과 ◎가 그려진 조각으로 정 사각형을 채우는 경우의 수는 4+16=20 ······ ⓒ ⑤, ⓒ에서 구하는 경우의 수는 곱의 법칙에 의하여 48×20=960 22. 그림과 같이 직사각형 모양으로 연결된 도로망이 있다.

이 도로망을 따라 A지점에서 출발하여 P지점을 지나 B지점으로 갈 때, 한 번 지난 도로는 다시 지나지 않으면서 최단거리로 가는 경우의 수는? [4점]



(2021년 4월 28번)

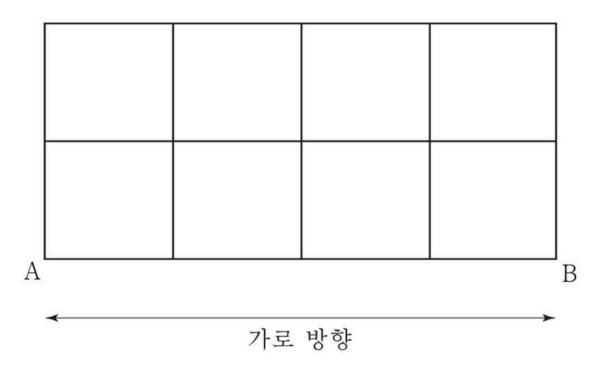
22. [출제의도] 같은 것이 있는 순열을 활용하여 문제 해결하기



그림과 같이 세 지점 Q_1 , Q_2 , Q_3 을 정하면 A지점에서 출발하여 P지점까지 가기 위해서는 Q_1 지점 또는 Q_2 지점 중 한 지점을 지나야 하고 P지점에서 출발하여 B지점까지 가기 위해서는 Q_2 지점 또는 Q_3 지점 중 한 지점을 지나야 한다. 그러므로 A지점에서 출발하여 P지점을 지나 B지점으로 갈 때, 한 번 지난 도로는 다시 지나지 않으면서 최단거리로 가는 경우와 각각의 경우의 수는 다음과 같다.

- (i) A→Q₁→P→Q₂→B의 순서로 이동하는 경우 $\frac{4!}{1!\times 3!} \times 1 \times 1 \times 1 \times \frac{4!}{2!\times 2!} = 24$
- (ii) A→Q₁→P→Q₃→B의 순서로 이동하는 경우 $\frac{4!}{1!\times 3!} \times 1 \times 1 \times \frac{5!}{2!\times 3!} = 40$
- (iii) A→Q₂→P→Q₃→B의 순서로 이동하는 경우 $\frac{3!}{1!\times 2!} \times 1 \times 1 \times 1 \times \frac{5!}{2!\times 3!} = 30$
- (i), (ii), (iii)에 의해 구하는 경우의 수는 24+40+30=94

23. 그림과 같이 한 변의 길이가 1인 정사각형 8개로 이루어진 도로망이 있다. 이 도로망을 따라 A 지점에서 출발하여 B 지점에 도착할 때, 가로 방향으로 이동한 길이의 합이 4이고 전체 이동한 길이가 12인 경우의 수를 구하시오. (단, 한 번 지나간 도로는 다시 지나지 않는다.) [4점]

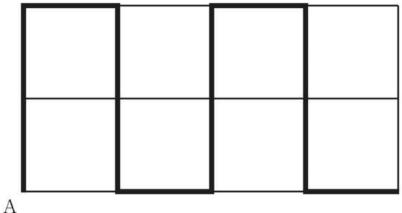


(2019년 4월 나형 28번)

23 [출제의도] 경우의 수를 활용하여 문제해결하기

A 지점에서 출발하여 B 지점에 도착할 때, 가로 방향으로 이동한 길이의 합이 4이고 전체 이동한 길이가 12가 되려면 세로 방향으로 이동한 길이의 합이 8이어야 한다.

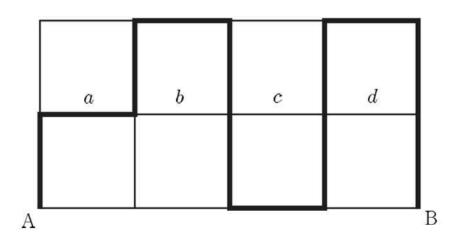
(i) 길이가 2인 세로 방향의 도로 4개를 지나가는 경우



В

길이가 2인 세로 방향의 도로 4개를 지나가는 경우의 수는 그림의 예와 같이 길이가 2인 세로 방향의 도로 5개 중 4개를 선택하는 경우의 수와 같으므로 $_5C_4=5$

(ii) 길이가 2인 세로 방향의 도로 3개를 지나가는 경우



길이가 2인 세로 방향의 도로 3개를 지나가는 경우의 수는 그림의 예와 같이 가로 방향의 도로 a, b, c, d 중 1개를 선택하는 경우의 수와 같으므로 ${}_4C_1=4$

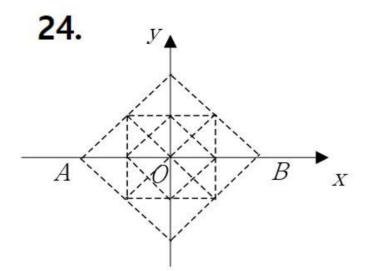
따라서 모든 경우의 수는 5+4=9

24. 좌표평면 위의 점들의 집합 $S = \{(x, y) | x$ 와 y는 정수}가 있다. 집합 S에 속하는 한 점에서 S에 속하는 다른 점으로 이동하는 '점프'는 다음 규칙을 만족시킨다.

점 P에서 한 번의 '점프'로 점 Q로 이동할 때, 선분 PQ의 길이는 1 또는 $\sqrt{2}$ 이다.

점 A(-2,0)에서 점 B(2,0)까지 4번만 '점프'하여 이동하는 경우의 수를 구하시오. (단, 이동하는 과정에서 지나는 점이 다르면 다른 경우이다.) [4점]

(2010학년도 6월 나형 25번)



점 A(-2,0)에서 점 B(2,0)까지 4번만 '점프'하여 이동하는 경우에서 길이가 1만큼 이동하는 방향은 \rightarrow , 길이가 $\sqrt{2}$ 만큼 이동하는 방향은 \nearrow 또는 \searrow 이어야 한다. 즉, 점 A에서 점 B로 4번만 '점프'하여 이동하는 경우는

- (i) → 4번 이용하는 경우
- 1 (가지)
- (ii) /, \ 각각 한 번씩과 → 두 번이용하는경우

$$\frac{4!}{2!} = 12$$
 (가지)

(iii) ↗, ↘ 각각 두 번씩 이용하는 경우

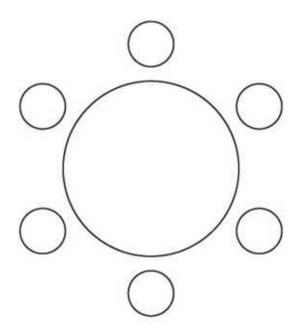
$$\frac{4!}{2!2!}$$
=6 (가지)

따라서 (i), (ii), (iii)에서 구하는 경우의 수는 1+12+6=19 (가지)

25. 세 학생 A, B, C를 포함한 6명의 학생이 있다.

이 6명의 학생이 일정한 간격을 두고 원 모양의 탁자에 다음 조건을 만족시키도록 모두 둘러앉는 경우의 수는? (단, 회전하여 일치하는 것은 같은 것으로 본다.) [4점]

- (가) A와 B는 이웃한다.
- (나) B와 C는 이웃하지 않는다.
- ① 32 ② 34 ③ 36 ④ 38 ⑤ 40



(2021학년도 수능 가형 26번, 나형 15번)

25. 출제의도 : 원순열을 이용하여 경우 의 수를 구할 수 있는가?

정답풀이 :

원 모양의 탁자에 우선 A, B가 이웃하여 앉는 경우의 수는

2! = 2

C가 나머지 4개의 자리 중 B와 이웃하지 않는 3개의 자리에 앉는 경우의 수는 $_3C_1=3$

나머지 3명이 나머지 3개의 자리에 앉는 경우의 수는

3! = 6

따라서 구하는 경우의 수는 $2 \times 3 \times 6 = 36$

정답 ③

다른풀이 :

6명의 학생을 A, B, C, D, E, F라 하자. 조건 (가)에서 A와 B는 이웃하므로 A와 B를 묶어 X라 하면 X, C, D, E, F를 원 모양의 탁자에 둘러앉는 경우의 수는 (5-1)!=4!=24

이 중에서 C가 B와 이웃하여 둘러앉는 경우는 A, B, C를 이 순서대로 묶어 Y라 놓고 Y, D, E, F를 원 모양의 탁자에 둘러앉는 경우와 같으므로 그 경우의 수는

(4-1)! = 3! = 6

이때 A와 B는 이웃하고 B와 C는 이웃하지 않는 경우는 C, A, B와 B, A, C의 두 가지 경우가 있으므로 구하는 경우의 수는 $2\times(24-6)=36$

- 26. 숫자 1, 2, 3, 4, 5, 6 중에서 중복을 허락하여 다섯 개를 다음 조건을 만족시키도록 선택한 후, 일렬로 나열하여 만들 수 있는 모든 다섯 자리의 자연수의 개수를 구하시오. [4점]
 - (가) 각각의 홀수는 선택하지 않거나 한 번만 선택한다.
 - (나) 각각의 짝수는 선택하지 않거나 두 번만 선택한다.

(2020학년도 수능 가형 28번, 나형 19번)

26.출제의도 : 같은 것이 있는 순열의 그러므로 경우의 수는 수를 이용하여 조건을 만족시키는 자연 $3 \times 60 = 180($ 가지) 수의 개수를 구할 수 있는가? 마라서 (;) (;;)에서

정답풀이:

조건 (가)에서 각각의 홀수가 선택하지 않거나 한 번만 선택되어야 하고 조건 (나)에서 각각의 짝수는 선택되지 않거나 두 번만 선택되어야 하므로 홀수는 1개, 3개 선택되어야 한다.

(i) 홀수 3개 중 1개가 선택되는 경우 홀수 3개 중 1개를 선택하고 짝수 3개 중 2개가 각각 2번씩 선택되어야 하므로 경우의 수는

$$_{3}C_{1} \times _{3}C_{2} = 3 \times 3 = 9(7 \times 1)$$

이 각각에 대하여 이 수를 나열하는 경우의 수는

$$\frac{5!}{2!2!1!} = 30$$

그러므로 경우의 수는 $9 \times 30 = 270($ 가지)

(ii) 홀수 3개 중 3개가 선택되는 경우짝수 3개 중 1개가 2번 선택되어야 하므로 경우의 수는

$$_{3}C_{3} \times _{3}C_{1} = 3(7)$$

이 각각에 대하여 이 수를 나열하는 경 우의 수는

$$\frac{5!}{2!1!1!1!} = 60(7 \text{FK})$$

그러므로 경우의 수는 $3\times60=180($ 가지) 따라서, (i), (ii)에서 구하는 경우의 수는 270+180=450(가지)

정답 450

27. 1, 2, 3, 4, 5의 숫자가 하나씩 적힌 5개의 공을 3개의 상자 A, B, C에 넣으려고 한다. 어느 상자에도 넣어진 공에 적힌 수의 합이 13 이상이 되는 경우가 없도록 공을 상자에 넣는 방법의 수는? (단, 빈 상자의 경우에는 넣어진 공에 적힌 수의 합을 0으로 한다.) [4점]

① 233 ② 228 ③ 222 ④ 215 ⑤ 211

(2007학년도 수능 나형 14번)

27. 3개의 상자 A, B, C에 서로 다른 5개의 공을 임의로 넣는 경우의 수는

$$_{3}\Pi_{5}=3^{5}=243$$

이 때, 상자에 있는 공에 적힌 숫자의 합이 13 이상인 상자는 많아야 1개이므로 공에 적힌 숫자의 합이 13 이상인 경우가 존재하려면 세 상자 중 어느 한 상자에는 3, 4, 5가적힌 공은 반드시 들어가고 또한, 이 상자에 1, 2가 적힌 공 중 적어도 하나가 들어가야한다.

따라서 이 경우의 수는

$$_{3}C_{1}\times(_{3}\Pi_{2}-_{2}\Pi_{2})=3(9-4)=15$$

따라서 구하는 경우의 수는

$$243 - 15 = 228$$

탭 ②

다른 풀이

3개의 상자 A, B, C에 서로 다른 5개의 공 을 임의로 넣는 경우의 수는

$$_{3}\Pi_{5} = 3^{5} = 243$$

- 이 때, 상자에 있는 공에 적힌 숫자의 합이 13 이상인 상자가 존재하는 경우의 수는 다 음과 같다.
- (i) 세 상자 중 어느 한 상자에 1, 3, 4, 5가 들어가고 2는 나머지 두 상자 중 어느 하나 에 들어가는 경우의 수는

(ii) 세 상자 중 어느 한 상자에 2, 3, 4, 5가 들어가고 1은 나머지 두 상자 중 어느 하나 에 들어가는 경우의 수는

(iii) 세 상자 중 어느 한 상자에 1, 2, 3, 4, 5가 들어가는 경우의 수는

3 (가지)

따라서 구하는 경우의 수는 243-(6+6+3)=228 28. 어떤 사회봉사센터에서는 다음과 같은 4가지 봉사활동 프로그램을 매일 운영하고 있다.

프로그램	A	В	С	D
봉사활동 시간	1시간	2시간	3시간	4시간

철수는 이 사회봉사센터에서 5일간 매일 하나씩의 프로그램에 참여하여 다섯 번의 봉사활동 시간 합계가 8시간이 되도록 아래와 같은 봉사활동 계획서를 작성하려고 한다. 작성할 수 있는 봉사활동 계획서의 가짓수는? [4점]

성명 :				
참여일	참여 프로그램	봉사활동 시간		
2009.1.5				
2009.1.6				
2009.1.7				
2009.1.8				
2009.1.9				
봉사활동 시간 합계		8시간		

① 47 ② 44 ③ 41 ④ 38 ⑤ 35

28. 다섯 번의 프로그램에 참여하여 시간 합계가 8시간이 되도록 하는 방법은 다 음과 같다.

$$8=1+1+1+1+4$$
 $=1+1+1+2+3$
 $=1+1+2+2+2$

(1) 8=1+1+1+1+4의 경우 작성할 수 있는 봉사활동 계획서의 가 짓수는

A, A, A, A, D 를 나열하는 방법의 수와 같으므로 <u>5!</u> =5(가지)

(2) 8=1+1+1+2+3의 경우 작성할 수 있는 봉사활동 계획서의 가 짓수는

A, A, A, B, C 를 나열하는 방법의 수와 같으므로 <u>5!</u> =20(가지)

(3) 8=1+1+2+2+2의 경우 작성할 수 있는 봉사활동 계획서의 가 짓수는

A, A, B, B, B 를 나열하는 방법의 수와 같으므로

$$\frac{5!}{2!3!} = 10(7)$$

따라서 구하는 가짓수는 5+20+10=35(가지)